Data Science Live Book 开源项目教程
1. 项目介绍
Data Science Live Book 是一个开源的书籍项目,旨在帮助读者学习数据科学、数据分析和机器学习。该项目由Pablo Casas开发,适合所有年龄段的读者。书籍内容涵盖了数据科学的多个方面,包括探索性数据分析、数据准备、变量选择和模型性能评估等。
项目地址:https://github.com/pablo14/data-science-live-book
2. 项目快速启动
2.1 克隆项目
首先,克隆项目到本地:
git clone https://github.com/pablo14/data-science-live-book.git
cd data-science-live-book
2.2 安装依赖
确保你已经安装了R语言和RStudio。然后,安装项目所需的R包:
install.packages(c("funModeling", "dplyr", "Hmisc", "reshape2", "ggplot2", "caret", "minerva", "missForest", "gridExtra", "mice", "Lock5Data", "corrplot", "RColorBrewer", "infotheo"))
2.3 运行示例代码
打开RStudio,加载项目中的示例代码并运行:
source("01_exploratory_data_analysis.Rmd")
3. 应用案例和最佳实践
3.1 探索性数据分析
在数据科学项目中,探索性数据分析(EDA)是第一步。通过EDA,你可以了解数据的结构、分布和潜在问题。项目中的01_exploratory_data_analysis.Rmd文件提供了详细的EDA示例。
3.2 数据准备
数据准备是数据科学项目中的关键步骤。项目中的02_data_preparation.Rmd文件展示了如何处理缺失值、处理高基数变量和处理异常值等。
3.3 变量选择
选择最佳变量是构建有效模型的关键。项目中的03_selecting_best_variables.Rmd文件提供了多种变量选择方法的示例。
3.4 模型性能评估
模型性能评估是确保模型在实际应用中表现良好的重要步骤。项目中的04_assesing_model_performance.Rmd文件展示了如何使用交叉验证、增益和提升分析等方法评估模型性能。
4. 典型生态项目
4.1 funModeling
funModeling 是一个R包,提供了许多用于数据分析和机器学习的实用函数。它是Data Science Live Book项目的基础,许多示例代码都依赖于这个包。
4.2 caret
caret 是一个R包,提供了统一的接口来训练和评估多种机器学习模型。在模型性能评估部分,项目使用了caret包来进行交叉验证。
4.3 ggplot2
ggplot2 是一个强大的R包,用于数据可视化。项目中的许多图表都是使用ggplot2生成的。
通过这些生态项目的结合使用,Data Science Live Book项目提供了一个完整的数据科学工作流程示例。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00