Data Science Hacks 使用教程
1. 项目介绍
Data Science Hacks 是一个开源项目,旨在为数据科学家提供一系列的技巧、窍门和工具,帮助他们更高效地进行数据科学工作。该项目由 Analytics Vidhya 维护,涵盖了从数据下载、数据处理、数据可视化到模型构建等多个方面的实用技巧。无论你是数据科学的新手还是经验丰富的专家,Data Science Hacks 都能为你提供有价值的帮助。
2. 项目快速启动
2.1 安装项目
首先,你需要克隆项目到本地:
git clone https://github.com/kunalj101/Data-Science-Hacks.git
cd Data-Science-Hacks
2.2 运行示例代码
项目中包含多个示例代码,你可以通过以下命令运行其中一个示例:
jupyter notebook
在打开的 Jupyter Notebook 中,选择一个示例文件(例如 Data Science Hack #1 - Resource Downloader.ipynb),然后运行其中的代码。
2.3 示例代码
以下是一个简单的示例代码,展示了如何使用 Pandas 进行数据处理:
import pandas as pd
# 创建一个示例 DataFrame
data = {
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [24, 27, 22],
'City': ['New York', 'Los Angeles', 'Chicago']
}
df = pd.DataFrame(data)
# 显示 DataFrame
print(df)
3. 应用案例和最佳实践
3.1 资源下载器
在数据科学项目中,数据的获取往往是第一步。Data Science Hack #1 - Resource Downloader 提供了一个快速下载网页资源的工具。你可以使用 Chrome 扩展 ResourceSaver 来一键下载网页中的所有资源。
3.2 Pandas 应用
Data Science Hack #2 - Pandas Apply 展示了如何使用 Pandas 的 apply 函数对数据进行处理。apply 函数允许你将自定义函数应用到 DataFrame 的每一行或每一列。
3.3 数据可视化
Data Science Hack #19 - Heatmap on pandas dataframe 展示了如何使用 Seaborn 在 Pandas DataFrame 上创建热力图。热力图可以帮助你快速理解数据的分布情况。
4. 典型生态项目
4.1 Pandas
Pandas 是 Python 中用于数据处理和分析的核心库。Data Science Hacks 项目中大量使用了 Pandas 进行数据操作和处理。
4.2 Jupyter Notebook
Jupyter Notebook 是一个交互式的编程环境,广泛用于数据科学和机器学习项目。项目中的所有示例代码都是在 Jupyter Notebook 中编写和运行的。
4.3 Seaborn
Seaborn 是一个基于 Matplotlib 的数据可视化库,提供了更高级的统计图表。在 Data Science Hack #19 中,我们使用了 Seaborn 来创建热力图。
通过以上内容,你可以快速上手 Data Science Hacks 项目,并利用其中的技巧和工具提升你的数据科学工作效率。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00