Data Science Hacks 使用教程
1. 项目介绍
Data Science Hacks 是一个开源项目,旨在为数据科学家提供一系列的技巧、窍门和工具,帮助他们更高效地进行数据科学工作。该项目由 Analytics Vidhya 维护,涵盖了从数据下载、数据处理、数据可视化到模型构建等多个方面的实用技巧。无论你是数据科学的新手还是经验丰富的专家,Data Science Hacks 都能为你提供有价值的帮助。
2. 项目快速启动
2.1 安装项目
首先,你需要克隆项目到本地:
git clone https://github.com/kunalj101/Data-Science-Hacks.git
cd Data-Science-Hacks
2.2 运行示例代码
项目中包含多个示例代码,你可以通过以下命令运行其中一个示例:
jupyter notebook
在打开的 Jupyter Notebook 中,选择一个示例文件(例如 Data Science Hack #1 - Resource Downloader.ipynb),然后运行其中的代码。
2.3 示例代码
以下是一个简单的示例代码,展示了如何使用 Pandas 进行数据处理:
import pandas as pd
# 创建一个示例 DataFrame
data = {
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [24, 27, 22],
'City': ['New York', 'Los Angeles', 'Chicago']
}
df = pd.DataFrame(data)
# 显示 DataFrame
print(df)
3. 应用案例和最佳实践
3.1 资源下载器
在数据科学项目中,数据的获取往往是第一步。Data Science Hack #1 - Resource Downloader 提供了一个快速下载网页资源的工具。你可以使用 Chrome 扩展 ResourceSaver 来一键下载网页中的所有资源。
3.2 Pandas 应用
Data Science Hack #2 - Pandas Apply 展示了如何使用 Pandas 的 apply 函数对数据进行处理。apply 函数允许你将自定义函数应用到 DataFrame 的每一行或每一列。
3.3 数据可视化
Data Science Hack #19 - Heatmap on pandas dataframe 展示了如何使用 Seaborn 在 Pandas DataFrame 上创建热力图。热力图可以帮助你快速理解数据的分布情况。
4. 典型生态项目
4.1 Pandas
Pandas 是 Python 中用于数据处理和分析的核心库。Data Science Hacks 项目中大量使用了 Pandas 进行数据操作和处理。
4.2 Jupyter Notebook
Jupyter Notebook 是一个交互式的编程环境,广泛用于数据科学和机器学习项目。项目中的所有示例代码都是在 Jupyter Notebook 中编写和运行的。
4.3 Seaborn
Seaborn 是一个基于 Matplotlib 的数据可视化库,提供了更高级的统计图表。在 Data Science Hack #19 中,我们使用了 Seaborn 来创建热力图。
通过以上内容,你可以快速上手 Data Science Hacks 项目,并利用其中的技巧和工具提升你的数据科学工作效率。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00