PyRIT项目中的PDF注入攻击与RAG漏洞防御实践
2025-07-01 13:56:01作者:晏闻田Solitary
在人工智能安全领域,间接提示注入攻击(XPIA)正成为新型威胁。本文将以Azure开源的PyRIT项目为背景,深入解析如何通过PDF注入技术测试AI系统的脆弱性,特别是针对检索增强生成(RAG)系统的攻击场景。
技术背景与核心概念
间接提示注入攻击是指攻击者通过看似无害的载体(如PDF文档)嵌入隐藏指令,当AI系统处理这些载体时,恶意指令会被执行。这类攻击对依赖外部数据源的RAG系统尤为危险,因为系统会自动检索并处理攻击者精心构造的内容。
PyRIT项目中的XPIAOrchestrator模块专门用于模拟此类攻击,其工作流程包含两个关键组件:
- 攻击设置目标(attack_setup_target):负责将含恶意指令的内容投递到目标位置
- 处理回调(processing_callback):触发目标系统处理被投毒的内容
PDF注入技术实现
在PyRIT中实现PDF注入需要解决两个技术挑战:
- 基础PDF生成:使用fpdf2库创建新PDF并设置透明文字
# 示例:设置透明文字
pdf.set_text_color(255, 255, 255) # 白色文字
pdf.set_alpha(0) # 完全透明
- 现有PDF修改:通过pypdf库操作已有简历文档
from pypdf import PdfWriter, PdfReader
reader = PdfReader("resume.pdf")
writer = PdfWriter()
for page in reader.pages:
writer.add_page(page)
# 在指定坐标添加透明文字
writer.add_annotation(..., contents="隐藏指令")
RAG场景下的攻击演示
在招聘AI系统中,完整的攻击链包含以下环节:
-
文档投毒阶段:
- 攻击者上传含隐藏指令的简历PDF
- 系统将文档分块并生成向量嵌入
- 嵌入向量存入向量数据库(如ChromaDB)
-
检索阶段:
- 招聘AI查询与职位描述最匹配的简历
- 语义搜索返回被投毒的文档块
-
生成阶段:
- RAG系统将检索结果与职位描述组合成最终提示
- 大语言模型处理包含恶意指令的完整提示
防御建议与实践
针对此类攻击,建议采取多层防御措施:
-
输入净化:
- 实现PDF内容规范化处理
- 检测并过滤非常规格式文本(如透明文字)
-
系统监控:
- 建立异常输出检测机制
- 对AI决策进行可解释性分析
-
架构设计:
- 在RAG管道中加入内容安全检查层
- 实现检索结果的多重验证
总结
通过PyRIT项目的实践,我们展示了PDF注入攻击在RAG系统中的实际威胁。这种攻击不仅针对简单的AI应用,对复杂的检索增强系统同样有效。随着AI系统在企业中的普及,安全团队需要将此类新型攻击纳入常规测试范围,通过持续的红队演练来提升系统鲁棒性。
未来,我们计划在PyRIT中进一步增强XPIA测试能力,包括自动化攻击迭代和更复杂的文档处理场景,以帮助开发者构建更安全的AI应用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
344
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896