Kotlin BLE Library 使用指南
1. 项目介绍
Kotlin BLE Library 是一个专为简化在Android平台上使用蓝牙低功耗(Bluetooth Low Energy,BLE)而设计的库。它通过封装原生API,并利用Kotlin协程处理异步操作,使BLE的使用更加符合规范且自然。此库提供了包括扫描设备、连接管理、广告发布以及服务器创建等功能模块,大大降低了开发者在Android环境下进行BLE开发的复杂度。
2. 项目快速启动
要开始使用Kotlin BLE Library,首先你需要将其添加到你的Android项目中。以下是如何集成库的基本步骤:
添加依赖
在你的build.gradle文件的dependencies部分加入以下依赖来获取最新版本的Scanner模块(以示例为准,实际应查询最新版本):
implementation 'no.nordicsemi.android:kotlin-ble-scanner:1.1.0'
对于完整的客户端功能,可以使用:
implementation 'no.nordicsemi.android:kotlin-ble-client:1.1.0'
确保你已经更新了Gradle插件和Android Studio至支持Kotlin和相应版本。
快速示例:设备扫描
以下代码展示如何快速地启动设备扫描:
import no.nordicsemi.android.kotlin.ble.BleScanner
val scanner = BleScanner(context)
scanner.scan()
.map { scannerResult ->
// 自定义逻辑,处理扫描结果
scannerResult.device
}
.onEach {
// 处理每个发现的设备
println("Found device: ${it.address}")
}
.launchIn(viewModelScope) // 假设viewModelScope用于协程管理
记得替换viewModelScope为你自己的协程作用域。
3. 应用案例和最佳实践
连接并控制BLE设备
为了演示如何与BLE设备交互,我们以连接并控制一款假设的LED设备为例。这涉及连接设备、发现服务、读写特性等基本操作。
// 假设bleDevice是通过扫描得到的设备对象
val connection = ClientBleGatt.connect(context, bleDevice, viewModelScope, options)
connection.discoverServices().flatMap { services ->
// 找到对应的service和characteristics
val ledCharacteristic = services.findCharacteristic(LED_UUID)
ledCharacteristic.getNotifications().onEach {
// 根据接收的数据更新UI或执行相关逻辑
}.launchIn(viewModelScope)
// 控制LED的示例
viewModelScope.launch {
// 写命令控制LED开
ledCharacteristic.write(SEND_ON_COMMAND)
// 或者读取状态
val ledStatus = ledCharacteristic.read().await()
// 更新状态到UI
}
}
这里需要注意的是使用launchIn(viewModelScope)确保操作在适当的协程上下文中执行。
4. 典型生态项目
虽然本指引集中于Kotlin BLE Library的使用,但值得注意的是,在实际应用中,这个库经常与现代Android架构组件结合使用,如LiveData、ViewModel,甚至是Room,以构建响应式和持久化的应用体验。例如,使用LiveData可以让UI自动响应BLE设备状态的变化,提高用户体验。
在构建更复杂的项目时,考虑到设备连接的稳定性、错误处理和用户界面的响应性,结合MVI(Model-View-Intent)、MVVM(Model-View-ViewModel)等模式是最佳实践。此外,利用Kotlin的高级特性和协程管理,可以有效地解决同步问题,提升代码的可读性和可维护性。
以上就是关于Kotlin BLE Library的一个简明入门指南,深入学习还需参考项目文档和源码,不断实践以掌握更多高级特性和优化技巧。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00