PyTorch-Image-Models中MobileNetV4训练精度停滞问题分析
2025-05-04 09:58:03作者:郁楠烈Hubert
在使用PyTorch-Image-Models库训练MobileNetV4模型时,开发者可能会遇到一个常见问题:模型在前几个训练周期(epoch)中,准确率指标保持完全不变。这种现象通常表明训练过程存在某些需要调整的参数或配置问题。
问题现象
当使用MobileNetV4_conv_small模型进行图像分类任务训练时,训练日志显示在前几个epoch中,模型的准确率指标完全没有变化。例如,连续多个epoch都报告完全相同的准确率数值,这表明模型的学习过程可能没有正常进行。
可能原因分析
-
指数移动平均(EMA)导致的延迟效应
- 当启用模型EMA(--model-ema)时,EMA模型需要一定时间(warmup)才能开始有效跟踪主模型的参数变化
- 在warmup期间,EMA模型的评估指标可能保持不变
-
学习率设置不当
- 初始学习率过高(如示例中的0.6)可能导致模型参数更新幅度过大
- 过大的学习率会使模型在参数空间中"跳跃",难以稳定学习特征
-
权重初始化问题
- 虽然使用了预训练权重(--pretrained-path),但输入尺寸(56x56)与预训练模型可能不匹配
- 不恰当的初始化会导致模型需要更长时间才能开始有效学习
-
正则化过强
- 示例中设置了较高的dropout率(0.2)和drop-connect率(0.2)
- 过强的正则化可能暂时抑制了模型的学习能力
解决方案建议
-
调整EMA相关参数
- 增加EMA warmup周期:使用--model-ema-warmup参数延长warmup时间
- 降低EMA衰减率:使EMA模型更紧密地跟踪主模型
-
优化学习率策略
- 降低初始学习率(如从0.6降至0.1或更低)
- 延长学习率warmup周期(--warmup-epochs)
- 尝试不同的学习率调度策略
-
检查输入预处理
- 确保输入尺寸(56x56)与模型架构兼容
- 验证数据增强参数是否合理
-
逐步调整正则化强度
- 暂时降低dropout和drop-connect率
- 训练稳定后再逐步增加正则化强度
-
监控训练动态
- 同时观察训练损失和验证损失的变化
- 检查参数梯度的规模和分布
实践建议
对于初次使用MobileNetV4的开发者,建议采用以下步骤进行调试:
- 首先禁用所有高级功能(--model-ema、dropout等),建立一个基线
- 使用较小的学习率开始训练,确保模型能够学习
- 逐步添加EMA、正则化等组件,观察对训练的影响
- 使用学习率查找器工具确定合适的学习率范围
- 对输入数据进行可视化检查,确保数据预处理正确
通过系统地调整这些参数,通常可以解决训练初期准确率停滞的问题,使模型进入正常的学习状态。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
676
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328