PyTorch-Image-Models中MobileNetV4训练精度停滞问题分析
2025-05-04 21:43:05作者:龚格成
在使用PyTorch-Image-Models库训练MobileNetV4模型时,开发者可能会遇到一个常见问题:在前几个训练周期(epoch)中,模型准确率保持不变。这种现象通常表明模型训练过程存在某些需要调整的参数或设置。
问题现象
训练初期,模型准确率在多个epoch中保持完全相同的数值,没有显示出任何学习进展。这种情况在使用了模型指数移动平均(Model EMA)时尤为常见。
根本原因分析
-
EMA预热不足:模型指数移动平均(Model EMA)在初始阶段如果缺乏足够的预热时间,会导致模型参数更新缓慢。EMA机制会平滑模型参数的变化,在训练初期如果直接应用强平滑效果,会抑制模型的学习能力。
-
学习率设置不当:过高的初始学习率可能导致模型在训练初期无法有效学习特征。虽然MobileNetV4通常需要相对较高的学习率(如0.6),但在某些数据集或输入尺寸下可能需要调整。
-
正则化过强:参数中设置的dropout(0.2)、drop-connect(0.2)以及权重衰减(1e-4)等正则化手段如果组合不当,可能会过度抑制模型的学习能力。
解决方案
-
调整EMA预热参数:
- 添加
--model-ema-warmup参数,为EMA设置适当的预热周期 - 建议从10-20个epoch的预热开始尝试
- 添加
-
优化学习率策略:
- 尝试降低初始学习率(如从0.6降至0.3)
- 确保学习率预热(
--warmup-epochs)与EMA预热协调 - 对于小输入尺寸(如56x56),可能需要更保守的学习率
-
正则化参数调整:
- 暂时降低或移除dropout和drop-connect
- 训练稳定后再逐步添加正则化
- 权重衰减可尝试调整为1e-5
-
监控训练动态:
- 观察训练损失曲线而不仅仅是准确率
- 确保损失值在初期epoch中确实在下降
最佳实践建议
- 对于新数据集,建议先使用较小的学习率和较少的正则化进行初步训练
- 逐步增加模型复杂度,先确保基础模型能够学习
- 使用学习率查找器工具确定合适的学习率范围
- 考虑使用梯度裁剪防止初期训练不稳定
通过系统性地调整这些参数,通常可以解决训练初期准确率停滞的问题,使MobileNetV4模型能够正常学习并收敛。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178