Schedule Free优化器在模型保存时的注意事项
2025-07-04 17:07:07作者:袁立春Spencer
概述
在使用Schedule Free项目中的AdamWScheduleFree优化器进行模型训练时,开发者可能会遇到一个看似奇怪的现象:模型保存前的权重与加载后的权重存在微小差异。这个问题在使用常规AdamW优化器时不会出现,但在使用Schedule Free优化器时却会出现。本文将深入分析这一现象的原因,并提供正确的解决方案。
问题现象
当使用AdamWScheduleFree优化器训练模型时,开发者可能会执行以下操作流程:
- 在训练过程中,每个epoch开始时调用
optimizer.train()
- 训练结束后打印模型权重
- 保存模型权重到文件
- 立即加载保存的权重到新模型实例
- 打印加载后的模型权重
此时会发现两个打印结果之间存在微小差异,例如某个参数的数值从-3.4487e-02变为-3.4062e-02。这种差异在使用常规AdamW优化器时不会出现。
原因分析
这种现象的根本原因在于Schedule Free优化器的工作机制。与常规优化器不同,Schedule Free优化器在训练和评估模式下会采用不同的参数更新策略:
- 训练模式(optimizer.train()):优化器使用"热启动"策略,维护一个额外的影子参数集,用于更稳定的训练过程
- 评估模式(optimizer.eval()):优化器使用实际模型参数,确保推理时的稳定性
当在训练模式下保存模型时,保存的实际上是优化器内部的工作参数,而非最终用于推理的稳定参数。这导致了保存和加载后的参数与直接打印的参数之间存在微小差异。
解决方案
正确的做法是在保存模型权重前将优化器切换到评估模式:
# 训练结束后
optimizer.eval() # 切换到评估模式
torch.save(model.state_dict(), model_weights_saving_path)
这一简单的步骤确保了保存的是模型的稳定参数,与后续加载的结果完全一致。
最佳实践
基于这一发现,使用Schedule Free优化器的完整训练流程应调整为:
for epoch in range(num_of_epochs):
model.train()
optimizer.train() # 训练模式
for i in range(0, len(train_data), batch_size):
inputs = train_data[i:min(i + batch_size, len(train_data))].to(device)
labels = train_labels[i:min(i + batch_size, len(train_labels))].to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 保存前切换到评估模式
optimizer.eval()
torch.save(model.state_dict(), model_weights_saving_path)
总结
Schedule Free优化器通过独特的训练策略提高了模型训练的稳定性,但这也带来了保存模型时的特殊要求。理解优化器在不同模式下的行为差异,可以帮助开发者避免潜在的模型参数不一致问题。记住在保存模型前切换到评估模式,是使用这类高级优化器时的关键实践。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~055CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0380- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
871
515

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
184

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
346
380

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
334
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
31
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
603
58