Schedule Free优化器在模型保存时的注意事项
2025-07-04 10:47:21作者:袁立春Spencer
概述
在使用Schedule Free项目中的AdamWScheduleFree优化器进行模型训练时,开发者可能会遇到一个看似奇怪的现象:模型保存前的权重与加载后的权重存在微小差异。这个问题在使用常规AdamW优化器时不会出现,但在使用Schedule Free优化器时却会出现。本文将深入分析这一现象的原因,并提供正确的解决方案。
问题现象
当使用AdamWScheduleFree优化器训练模型时,开发者可能会执行以下操作流程:
- 在训练过程中,每个epoch开始时调用
optimizer.train() - 训练结束后打印模型权重
- 保存模型权重到文件
- 立即加载保存的权重到新模型实例
- 打印加载后的模型权重
此时会发现两个打印结果之间存在微小差异,例如某个参数的数值从-3.4487e-02变为-3.4062e-02。这种差异在使用常规AdamW优化器时不会出现。
原因分析
这种现象的根本原因在于Schedule Free优化器的工作机制。与常规优化器不同,Schedule Free优化器在训练和评估模式下会采用不同的参数更新策略:
- 训练模式(optimizer.train()):优化器使用"热启动"策略,维护一个额外的影子参数集,用于更稳定的训练过程
- 评估模式(optimizer.eval()):优化器使用实际模型参数,确保推理时的稳定性
当在训练模式下保存模型时,保存的实际上是优化器内部的工作参数,而非最终用于推理的稳定参数。这导致了保存和加载后的参数与直接打印的参数之间存在微小差异。
解决方案
正确的做法是在保存模型权重前将优化器切换到评估模式:
# 训练结束后
optimizer.eval() # 切换到评估模式
torch.save(model.state_dict(), model_weights_saving_path)
这一简单的步骤确保了保存的是模型的稳定参数,与后续加载的结果完全一致。
最佳实践
基于这一发现,使用Schedule Free优化器的完整训练流程应调整为:
for epoch in range(num_of_epochs):
model.train()
optimizer.train() # 训练模式
for i in range(0, len(train_data), batch_size):
inputs = train_data[i:min(i + batch_size, len(train_data))].to(device)
labels = train_labels[i:min(i + batch_size, len(train_labels))].to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 保存前切换到评估模式
optimizer.eval()
torch.save(model.state_dict(), model_weights_saving_path)
总结
Schedule Free优化器通过独特的训练策略提高了模型训练的稳定性,但这也带来了保存模型时的特殊要求。理解优化器在不同模式下的行为差异,可以帮助开发者避免潜在的模型参数不一致问题。记住在保存模型前切换到评估模式,是使用这类高级优化器时的关键实践。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178