Infinity项目异步推理引擎的性能优化实践
2025-07-04 02:39:24作者:史锋燃Gardner
异步推理引擎的启动开销问题分析
在使用Infinity项目的Python API进行文本嵌入处理时,开发者发现了一个性能问题:虽然实际的嵌入计算仅需20ms完成,但整个异步执行过程却耗时520ms。经过分析,主要时间消耗发生在异步上下文管理器async with engine的使用上。
问题根源探究
这种性能差异的根本原因在于异步引擎的启动和关闭机制。当使用async with engine语法时,每次进入上下文都会触发引擎的完整启动和初始化过程,这包括模型加载、设备分配等耗时操作。而在实际应用中,这些初始化操作通常只需要执行一次。
最佳实践方案
针对这一问题,Infinity项目维护者提出了明确的优化建议:
-
避免频繁启动/停止引擎:不应在每次推理时都使用
async with engine,这会导致重复的初始化开销。 -
使用显式生命周期管理:推荐使用
astart()和astop()方法手动控制引擎的生命周期,在应用启动时初始化一次,在整个运行期间重复使用。 -
正确使用事件循环:
asyncio.run()应该只在程序的主入口点调用一次,而不是在每次推理时都调用。
优化后的代码示例
import asyncio
from infinity_emb import AsyncEngineArray, EngineArgs
async def main():
# 初始化引擎(仅一次)
array = AsyncEngineArray.from_args([
EngineArgs(model_name_or_path="BAAI/bge-m3")
])
engine = array[0]
# 显式启动引擎
await engine.astart()
try:
# 多次推理重用同一引擎
for _ in range(100):
embeddings, usage = await engine.embed(sentences=["your text"])
# 处理嵌入结果...
finally:
# 程序退出前停止引擎
await engine.astop()
# 程序入口点(仅调用一次)
asyncio.run(main())
性能优化原理
这种优化之所以有效,是因为:
- 减少重复初始化:模型加载、设备分配等操作只需执行一次
- 保持热状态:引擎保持运行状态,避免了冷启动开销
- 资源复用:GPU内存、计算图等资源得到有效复用
适用场景建议
- Web服务:在FastAPI等异步框架中,应在服务启动时初始化引擎
- 批处理任务:处理大批量数据时保持引擎长运行
- 交互式应用:在用户会话期间保持引擎活跃
通过遵循这些最佳实践,开发者可以充分发挥Infinity项目异步推理引擎的性能潜力,将处理延迟从500ms级别降低到20ms级别,实现接近实时的文本嵌入处理能力。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
201
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
427
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695