首页
/ Intel Movidius Neural Compute Stick (NCS) 与 ROS 集成教程

Intel Movidius Neural Compute Stick (NCS) 与 ROS 集成教程

2024-09-09 21:06:15作者:虞亚竹Luna

1. 项目介绍

Intel Movidius Neural Compute Stick 是一款便携式的深度学习设备,适用于边缘计算的人工智能编程入门。它内置了低功耗且高性能的 Movidius 视觉处理单元(VPU),这一技术广泛应用于智能安防摄像头、手势控制无人机、工业机器视觉系统等场景。本项目为一个ROS(Robot Operating System)包装器,旨在通过NCSDK(Neural Compute SDK)的接口,让开发者能够在ROS环境中轻松利用NCS进行图像分类、对象检测等深度学习任务。


2. 项目快速启动

环境准备

确保您的开发环境已满足以下条件:

  • 操作系统: Ubuntu 16.04
  • ROS版本: Kinetic
  • 硬件需求: Movidius Neural Compute Stick (NCS)
  • 软件依赖:
    • 安装ROS Kinetic Desktop-Full。
    • 下载并安装NCSDK v1.12.00。
    • 获取Movidius Neural Compute App Zoo。

安装步骤简述:

  1. ROS安装: 参照ROS官方文档安装ROS Kinetic。
  2. 创建Catkin工作区: 在终端中执行以下命令来创建和初始化一个新的catkin工作区。
    mkdir -p ~/ros_workspace/src
    cd ~/ros_workspace/src
    git clone https://github.com/intel/ros_intel_movidius_ncs.git
    cd ..
    catkin_make
    
  3. 配置NCSDK和App Zoo:
    • 按指引下载NCSDK并安装到默认路径或自定义路径,并在/opt/movidius下创建到NC App Zoo的符号链接。

运行示例

快速启动NCS与ROS集成,尝试对象检测演示:

roslaunch mvnc_ros demo.launch

此命令将启动一个ROS节点,用于检测视频流中的对象。


3. 应用案例与最佳实践

在实际应用中,开发者可以利用NCS的强大运算能力进行实时视频分析、机器人导航障碍物识别等。最佳实践建议包括:

  • 调整模型大小和精度以适应不同性能要求和实时性需求。
  • 利用ROS的topic和service机制,灵活地将NCS的推理结果融入更复杂的机器人控制系统中。
  • 优化图像预处理步骤,减少数据传输和处理时间。

4. 典型生态项目

虽然直接基于https://github.com/intel/ros_intel_movidius_ncs.git的维护状态已过时,但Intel推出了ros_openvino_toolkit作为后续更新和维护的工具包,这扩展了对更多深度学习模型的支持,并兼容了ROS2。对于希望探索更广泛的AI应用场景和最新硬件支持的开发者来说,这是一个推荐的生态项目方向。

开发者可访问ros_openvino_toolkit,获取关于如何在ROS环境下利用OpenVINO和最新的Intel硬件加速人工智能计算的详细指南和示例。


以上就是Intel Movidius Neural Compute Stick与ROS集成的基础教程,随着技术的发展,推荐关注和采用最新发布的工具包以获得更好的性能和功能支持。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5