Chai-Lab项目中PoseBusters评分复现的技术解析
2025-07-10 17:15:10作者:乔或婵
引言
在分子对接和药物发现领域,PoseBusters评分是评估预测分子构象准确性的重要指标。本文深入探讨了在Chai-Lab项目中复现PoseBusters评分过程中遇到的技术挑战和解决方案。
核心问题分析
在尝试复现Chai-1模型的PoseBusters评分时,研究人员发现实际测得的成功率(71%)与论文报告的77%存在差异。这一差异引发了关于评分计算方法的深入探讨。
关键技术要点
1. 生物组装体与不对称单元的选择
研究发现,使用生物组装体(biological assembly)而非不对称单元(asymmetric unit)作为参考结构会影响最终评分结果。特别是在具有对称性的复合物中,这种选择会显著改变计算结果。
2. 多配体拷贝的处理策略
当参考结构中存在多个配体拷贝时,正确的处理方法是:
- 为每个配体拷贝单独定义结合口袋
- 独立进行结构对齐
- 计算所有可能的RMSD值
- 取最小值作为最终结果
3. 口袋对齐的精确实现
按照AlphaFold3的方法论,口袋对齐应遵循以下步骤:
- 选择主蛋白链(与配体接触最多的链)
- 使用距离配体10Å内的骨架原子(CA、C、N)进行对齐
- 在Chai-Lab实现中,仅使用了CA原子进行对齐
实现差异分析
原始实现与论文报告结果差异的主要原因包括:
- 参考结构选择不同(生物组装体vs不对称单元)
- 口袋对齐策略不同(单次全局对齐vs逐个配体对齐)
- 对齐原子选择不同(完整骨架原子vs仅CA原子)
技术建议
对于需要复现PoseBusters评分的研究人员,建议:
- 明确使用生物组装体作为参考结构
- 实现逐个配体的独立对齐和评分
- 详细记录对齐策略和参数选择
- 与已知基准(如RF2AA)进行交叉验证
结论
精确复现分子对接评分需要严格遵循计算流程的每个技术细节。Chai-Lab项目中的经验表明,即使是看似微小的实现差异(如参考结构选择或对齐策略)也可能导致显著的评分变化。这强调了在分子对接研究中方法描述和实现细节透明化的重要性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.56 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
287
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
446
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
235
98
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
450
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705