DeepMD-kit训练偶极矩模型时出现NAN问题的分析与解决
2025-07-10 09:06:23作者:龚格成
问题描述
在使用DeepMD-kit v3.0.0的TensorFlow后端训练偶极矩(dipole)模型时,发现即使提供了参考数据,训练过程中输出的损失值仍然显示为NAN。相比之下,PyTorch后端在相同配置下能够正常输出训练损失值。
现象对比
TensorFlow后端输出的lcurve.out文件中,rmse_lc_val和rmse_lc_trn列始终显示为NAN,并伴随注释"# If there is no available reference data, rmse_*_{val,trn} will print nan"。
而PyTorch后端在相同配置下,能够正常输出局部偶极矩的训练和验证误差值,仅全局偶极矩部分显示为NAN。
问题根源分析
经过深入分析,发现问题源于数据文件命名规范的差异:
- DeepMD-kit v2.x版本使用"atomic_*.npy"作为原子偶极矩数据的文件名格式
- 在v3.0.0版本中,相关代码被修改为使用"atom_*.npy"格式
- TensorFlow后端的数据处理模块没有完全兼容这两种命名格式
- PyTorch后端的数据处理模块已经实现了对两种命名格式的兼容性支持
解决方案
为解决此问题,需要对TensorFlow后端的数据处理模块进行修改,使其能够同时识别"atom_.npy"和"atomic_.npy"两种文件命名格式。具体实现方式可参考PyTorch后端的兼容性处理逻辑。
修改后的代码应包含对两种文件名的检查机制,确保无论用户使用哪种命名约定,都能正确加载原子偶极矩数据。
技术背景
DeepMD-kit中的偶极矩模型训练需要两种类型的数据:
- 全局偶极矩数据(通常为system级别)
- 局部/原子偶极矩数据(atomic级别)
在模型训练过程中,系统会根据损失函数配置自动识别和使用相应类型的数据。当数据文件命名不规范或无法找到时,会导致训练过程中无法正确计算损失值,从而出现NAN。
最佳实践建议
为避免类似问题,建议用户:
- 统一使用"atomic_*.npy"作为原子偶极矩数据的文件名格式
- 在升级DeepMD-kit版本时,注意检查数据文件命名规范的变更
- 训练前验证数据是否被正确加载
- 关注训练日志中的警告信息,及时发现数据加载问题
总结
此问题凸显了深度学习框架中数据接口兼容性的重要性。通过标准化数据命名规范和完善兼容性处理,可以显著提升用户体验和框架的鲁棒性。DeepMD-kit团队将持续优化各后端的一致性,确保用户在不同后端上获得相同的训练体验。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
213
2.21 K

暂无简介
Dart
521
115

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
578

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
86

Ascend Extension for PyTorch
Python
65
94

React Native鸿蒙化仓库
JavaScript
209
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399