Graphexp 开源项目教程
1. 项目介绍
Graphexp 是一个轻量级的 Web 界面,用于探索和显示存储在 Gremlin 图数据库中的图数据。它通过 Gremlin 服务器(版本 3.2.x 及以上)与图数据库进行交互,并使用 D3.js 进行图的可视化。Graphexp 旨在提供一个简单而高效的工具,帮助用户快速探索和分析图数据。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您已经安装了以下软件:
- Docker
- 现代 Web 浏览器(如 Chrome、Firefox)
2.2 下载并运行 Graphexp
-
克隆项目仓库:
git clone https://github.com/armandleopold/graphexp.git cd graphexp -
使用 Docker 运行 Gremlin 服务器和 Graphexp:
docker-compose up -d -
打开浏览器,访问
http://localhost:8183/graphexp.html,您将看到 Graphexp 的界面。
2.3 配置 Gremlin 服务器
在 Graphexp 界面中,您可以在页面底部配置 Gremlin 服务器的设置。默认情况下,Gremlin 服务器的地址为 localhost:8182。您需要指定通信协议(WebSocket 或 REST)和 Gremlin 服务器的版本。
3. 应用案例和最佳实践
3.1 探索图数据
Graphexp 提供了一个直观的界面,允许用户通过点击节点来探索图数据。例如,您可以点击一个节点来查看其邻居节点和边,或者使用搜索功能来查找特定的节点或节点组。
3.2 查询图数据库
在顶部导航栏中,您可以使用不同的搜索选项来查询图数据库。例如,您可以通过节点标签、节点属性或边标签来过滤和查找节点。
3.3 可视化概念
Graphexp 的可视化基于“层”的概念,允许用户逐步深入图数据。每次点击节点时,其邻居节点会显示在当前层中,而之前的节点会逐渐消失。这种设计有助于用户专注于当前的探索路径。
4. 典型生态项目
4.1 Gremlin 图数据库
Gremlin 是一个图遍历语言,广泛用于图数据库的查询和操作。Graphexp 通过 Gremlin 服务器与图数据库进行交互,提供了强大的图数据探索功能。
4.2 D3.js
D3.js 是一个用于数据可视化的 JavaScript 库。Graphexp 使用 D3.js 来实现图的可视化,提供了丰富的交互功能和美观的视觉效果。
4.3 Docker
Docker 是一个容器化平台,允许用户轻松部署和管理应用程序。Graphexp 提供了 Docker 配置文件,使用户能够快速启动 Gremlin 服务器和 Graphexp 界面。
通过以上模块的介绍,您应该能够快速上手并使用 Graphexp 进行图数据的探索和分析。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00