RDKit中MolToInchiKey函数版本间差异问题分析
问题背景
在化学信息学领域,RDKit是一个广泛使用的开源工具包,用于处理分子结构和化学反应。其中,MolToInchiKey函数用于将分子结构转换为InChIKey(国际化学标识符哈希键),这是化学结构中非常重要的唯一标识符。
近期有用户发现,在RDKit不同版本间,对于某些特殊分子结构,MolToInchiKey函数生成的InChIKey存在不一致的情况。这种差异主要出现在2024.03.2到2024.03.3版本升级过程中。
问题重现
以简单分子"C=[At]"(含有一个碳原子和一个砹原子的双键结构)为例:
from rdkit import Chem
print(Chem.MolToInchiKey(Chem.MolFromSmiles("C=[At]", sanitize=False)))
在RDKit 2023.09.1版本中输出为:
FPQJPOVNMNOCOT-UHFFFAOYSA-N
而在RDKit 2024.03.5版本中输出为:
AZYOCFZZNKPCCR-UHFFFAOYSA-N
原因分析
经过深入调查,发现这种差异源于RDKit内部对InChI生成逻辑的一个bug修复。在2024.03.3版本中,修复了关于InChI代码调用方式的问题。
关键点在于,早期版本在处理某些特殊价态原子时,会错误地计算分子式。以前述"C=[At]"分子为例:
-
修复前版本生成的InChI为:
InChI=1S/CH3At/c1-2/h2H,1H2- 分子式错误地计算为CH3At(多了一个氢原子)
-
修复后版本生成的InChI为:
InChI=1S/CH2At/c1-2/h1H2- 正确反映了分子式CH2At
- 同时给出了价态警告:"Accepted unusual valence(s): At(2)"
技术影响
-
化学准确性:修复后的版本能更准确地反映分子的实际组成和结构,特别是对于含有不常见价态元素的分子。
-
向后兼容性:这种修复虽然提高了准确性,但确实导致了不同版本间InChIKey的不一致。对于依赖InChIKey作为持久标识符的应用,需要考虑版本差异带来的影响。
-
价态处理:RDKit现在能更好地处理非常规价态,如示例中砹原子的二价状态,并会给出明确的警告信息。
建议与解决方案
对于需要保持InChIKey一致性的应用场景,开发者可以考虑以下方案:
-
版本锁定:在关键应用中锁定RDKit版本,确保所有环境使用相同的算法版本。
-
数据迁移:如果必须升级版本,可以考虑对历史数据进行批量重新计算和迁移。
-
自定义处理:对于特定分子类型,可以开发预处理逻辑来确保一致的输出。
总结
RDKit作为活跃开发的开源项目,会不断改进算法和修复问题。这次InChIKey生成的变更反映了项目对化学准确性的追求。开发者在使用这类工具时,应当关注版本更新日志,特别是涉及核心功能如分子标识符生成的变更,以便及时调整应用逻辑。
对于化学信息学应用来说,分子标识符的一致性至关重要。这次事件也提醒我们,在开发涉及化学结构处理的系统时,需要考虑算法版本可能带来的影响,并建立相应的版本管理和数据迁移策略。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00