RDKit中MolToInchiKey函数版本间差异问题分析
问题背景
在化学信息学领域,RDKit是一个广泛使用的开源工具包,用于处理分子结构和化学反应。其中,MolToInchiKey函数用于将分子结构转换为InChIKey(国际化学标识符哈希键),这是化学结构中非常重要的唯一标识符。
近期有用户发现,在RDKit不同版本间,对于某些特殊分子结构,MolToInchiKey函数生成的InChIKey存在不一致的情况。这种差异主要出现在2024.03.2到2024.03.3版本升级过程中。
问题重现
以简单分子"C=[At]"(含有一个碳原子和一个砹原子的双键结构)为例:
from rdkit import Chem
print(Chem.MolToInchiKey(Chem.MolFromSmiles("C=[At]", sanitize=False)))
在RDKit 2023.09.1版本中输出为:
FPQJPOVNMNOCOT-UHFFFAOYSA-N
而在RDKit 2024.03.5版本中输出为:
AZYOCFZZNKPCCR-UHFFFAOYSA-N
原因分析
经过深入调查,发现这种差异源于RDKit内部对InChI生成逻辑的一个bug修复。在2024.03.3版本中,修复了关于InChI代码调用方式的问题。
关键点在于,早期版本在处理某些特殊价态原子时,会错误地计算分子式。以前述"C=[At]"分子为例:
-
修复前版本生成的InChI为:
InChI=1S/CH3At/c1-2/h2H,1H2- 分子式错误地计算为CH3At(多了一个氢原子)
-
修复后版本生成的InChI为:
InChI=1S/CH2At/c1-2/h1H2- 正确反映了分子式CH2At
- 同时给出了价态警告:"Accepted unusual valence(s): At(2)"
技术影响
-
化学准确性:修复后的版本能更准确地反映分子的实际组成和结构,特别是对于含有不常见价态元素的分子。
-
向后兼容性:这种修复虽然提高了准确性,但确实导致了不同版本间InChIKey的不一致。对于依赖InChIKey作为持久标识符的应用,需要考虑版本差异带来的影响。
-
价态处理:RDKit现在能更好地处理非常规价态,如示例中砹原子的二价状态,并会给出明确的警告信息。
建议与解决方案
对于需要保持InChIKey一致性的应用场景,开发者可以考虑以下方案:
-
版本锁定:在关键应用中锁定RDKit版本,确保所有环境使用相同的算法版本。
-
数据迁移:如果必须升级版本,可以考虑对历史数据进行批量重新计算和迁移。
-
自定义处理:对于特定分子类型,可以开发预处理逻辑来确保一致的输出。
总结
RDKit作为活跃开发的开源项目,会不断改进算法和修复问题。这次InChIKey生成的变更反映了项目对化学准确性的追求。开发者在使用这类工具时,应当关注版本更新日志,特别是涉及核心功能如分子标识符生成的变更,以便及时调整应用逻辑。
对于化学信息学应用来说,分子标识符的一致性至关重要。这次事件也提醒我们,在开发涉及化学结构处理的系统时,需要考虑算法版本可能带来的影响,并建立相应的版本管理和数据迁移策略。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00