RDKit中MolToInchiKey函数版本间差异问题分析
问题背景
在化学信息学领域,RDKit是一个广泛使用的开源工具包,用于处理分子结构和化学反应。其中,MolToInchiKey函数用于将分子结构转换为InChIKey(国际化学标识符哈希键),这是化学结构中非常重要的唯一标识符。
近期有用户发现,在RDKit不同版本间,对于某些特殊分子结构,MolToInchiKey函数生成的InChIKey存在不一致的情况。这种差异主要出现在2024.03.2到2024.03.3版本升级过程中。
问题重现
以简单分子"C=[At]"(含有一个碳原子和一个砹原子的双键结构)为例:
from rdkit import Chem
print(Chem.MolToInchiKey(Chem.MolFromSmiles("C=[At]", sanitize=False)))
在RDKit 2023.09.1版本中输出为:
FPQJPOVNMNOCOT-UHFFFAOYSA-N
而在RDKit 2024.03.5版本中输出为:
AZYOCFZZNKPCCR-UHFFFAOYSA-N
原因分析
经过深入调查,发现这种差异源于RDKit内部对InChI生成逻辑的一个bug修复。在2024.03.3版本中,修复了关于InChI代码调用方式的问题。
关键点在于,早期版本在处理某些特殊价态原子时,会错误地计算分子式。以前述"C=[At]"分子为例:
-
修复前版本生成的InChI为:
InChI=1S/CH3At/c1-2/h2H,1H2- 分子式错误地计算为CH3At(多了一个氢原子)
-
修复后版本生成的InChI为:
InChI=1S/CH2At/c1-2/h1H2- 正确反映了分子式CH2At
- 同时给出了价态警告:"Accepted unusual valence(s): At(2)"
技术影响
-
化学准确性:修复后的版本能更准确地反映分子的实际组成和结构,特别是对于含有不常见价态元素的分子。
-
向后兼容性:这种修复虽然提高了准确性,但确实导致了不同版本间InChIKey的不一致。对于依赖InChIKey作为持久标识符的应用,需要考虑版本差异带来的影响。
-
价态处理:RDKit现在能更好地处理非常规价态,如示例中砹原子的二价状态,并会给出明确的警告信息。
建议与解决方案
对于需要保持InChIKey一致性的应用场景,开发者可以考虑以下方案:
-
版本锁定:在关键应用中锁定RDKit版本,确保所有环境使用相同的算法版本。
-
数据迁移:如果必须升级版本,可以考虑对历史数据进行批量重新计算和迁移。
-
自定义处理:对于特定分子类型,可以开发预处理逻辑来确保一致的输出。
总结
RDKit作为活跃开发的开源项目,会不断改进算法和修复问题。这次InChIKey生成的变更反映了项目对化学准确性的追求。开发者在使用这类工具时,应当关注版本更新日志,特别是涉及核心功能如分子标识符生成的变更,以便及时调整应用逻辑。
对于化学信息学应用来说,分子标识符的一致性至关重要。这次事件也提醒我们,在开发涉及化学结构处理的系统时,需要考虑算法版本可能带来的影响,并建立相应的版本管理和数据迁移策略。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00