推荐开源项目:JPMML-SparkML - 实现Spark ML到PMML的无缝转换
项目介绍
JPMML-SparkML 是一个强大的Java库和命令行应用,致力于将Apache Spark ML的管道转换为PMML(预测建模标记语言)格式。这使得基于Spark构建的机器学习模型能够轻松地在各种环境和平台上部署,实现跨系统可移植性。
项目技术分析
该项目的主要亮点在于其深入的功能性和扩展性:
-
功能齐全:支持从特征提取到转换的一系列流程,包括Binarizer、Bucketizer、QuantileDiscretizer等,以及多种分类和回归模型,如决策树、随机森林等。
-
高度可扩展:提供了丰富的Java API用于开发自定义转换器,并自动发现和注册这些转换器。还能与其他JPMML转换库(如JPMML-LightGBM和JPMML-XGBoost)进行集成。
-
生产级品质:全面的测试覆盖,确保与JPMML-Evaluator库完全兼容,保证了代码质量。
应用场景
JPMML-SparkML在以下场景中发挥关键作用:
-
云迁移:当您需要将基于Spark的机器学习模型从一个云平台迁移到另一个时,PMML文件可以作为中间格式,简化迁移过程。
-
企业级部署:对于要求数据模型在不同系统间共享的企业,JPMML-SparkML允许在不依赖Spark的情况下执行模型预测。
-
数据分析工具集成:PMML是许多商业智能和数据分析工具所支持的标准,因此通过JPMML-SparkML,您的Spark模型可以直接被这些工具解析和使用。
项目特点
-
全面支持:覆盖了Apache Spark ML库中的多种算法和操作,包括特征选择、预处理和预测模型。
-
定制化:提供API接口,允许开发人员根据需求创建自定义转换器。
-
高兼容性:与JPMML生态系统无缝对接,可以与第三方库一起工作,比如LightGBM和XGBoost。
-
质量保证:完整测试覆盖率,确保稳定可靠。
-
易用性:简单安装和使用,无论是作为库还是命令行应用,都易于集成到现有工作流中。
总之,如果您正在寻找一种方法来充分利用Spark ML的强大功能,并将其转化为可广泛使用的标准格式,那么JPMML-SparkML是一个值得尝试的解决方案。它不仅提供了高效的模型转换,而且还支持扩展和定制,以满足更复杂的需求。现在就加入并体验这种无缝转换的力量吧!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00