MLeap:机器学习管道生产部署指南
2024-10-09 20:54:47作者:裘晴惠Vivianne
项目介绍
MLeap 是一款由 Combust 开发的开源工具,旨在简化数据科学家和工程师将基于 Spark 和 Scikit-learn 的机器学习管道部署到生产环境的过程。它提供了一种高效、便携且易于集成的方法,允许用户将训练好的模型转换成一个独立运行的格式,无需依赖于原始框架如 Spark 的上下文或第三方库(如 NumPy、Pandas 等)。
MLeap 构建在 JVM 上,支持 JSON 和 Protocol Buffers 两种序列化格式,并提供了高度兼容现有技术栈的能力,包括与 Spark 和 Scikit-learn 的紧密集成。
快速启动
要快速开始使用 MLeap,首先确保本地安装了 JDK 和适当的Scala环境。接下来,通过以下步骤在项目中引入 MLeap:
通过 SBT 引入
在你的 build.sbt
文件添加以下依赖:
libraryDependencies += "ml.combust.mleap" %% "mleap-runtime" % "0.23.1"
通过 Maven 引入
在你的 pom.xml
中加入:
<dependency>
<groupId>ml.combust.mleap</groupId>
<artifactId>mleap-runtime_2.12</artifactId>
<version>0.23.1</version>
</dependency>
示例:Spark 管道的创建与导出
创建并导出一个简单的 Spark ML 管道示例如下:
import ml.combust.bundle.BundleFile
import ml.combust.mleap.spark.SparkSupport._
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.{Binarizer, StringIndexer}
import org.apache.spark.sql._
val datasetPath = "/path/to/your/csv"
val df = spark.read.format("csv")
.option("header", "true")
.load(datasetPath)
.withColumn("test_double", col("test_double").cast("double"))
val indexer = new StringIndexer().setInputCol("category").setOutputCol("categoryIndexed")
val binarizer = new Binarizer().setInputCol("value").setOutputCol("valueBinarized").setThreshold(0.5)
val pipeline = new Pipeline().setStages(Array(indexer, binarizer))
val model = pipeline.fit(df)
val sbc = SparkBundleContext().withDataset(model.transform(df))
using(BundleFile("/path/to/save/pipeline.zip")) { bf =>
model.writeBundle.save(bf)(sbc).get
}
应用案例与最佳实践
MLeap特别适用于需要将复杂的机器学习模型无缝部署到资源受限的生产环境,比如微服务架构或是嵌入式系统中。最佳实践通常涉及:
- 模型标准化:确保所有模型都遵循统一的序列化标准。
- 性能调优:利用 MLeap 的轻量级执行引擎优化模型推理速度。
- 实时服务集成:将MLeap模型集成到API服务中,实现快速预测响应。
典型生态项目
虽然MLeap本身是一个强大的工具,但其生态系统还包括用于特定场景的集成和扩展,例如:
- MLeap Serving: 提供了一个服务化的解决方案,使得通过HTTP接口可以轻松访问和调用序列化后的模型进行预测。
- MLeap Spring Boot Integration: 支持快速构建基于Spring Boot的应用来托管MLeap模型服务。
- 社区贡献的插件: 如 TensorFlow 和 XGBoost 的集成,增强了模型的支持范围。
结合这些组件,开发者能够建立起从训练到生产的一条流畅管道,加速企业级机器学习应用的迭代周期。
请注意,随着项目版本更新,上述信息可能会有所变化。务必参考最新版本的官方文档以获取最准确的指导。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-TerminusDeepSeek-V3.1-Terminus是V3的更新版,修复语言问题,并优化了代码与搜索智能体性能。Python00
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AudioFly
AudioFly is a text-to-audio generation model based on the LDM architecture. It produces high-fidelity sounds at 44.1 kHz sampling rate with strong alignment to text prompts, suitable for sound effects, music, and multi-event audio synthesis tasks.Python00- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.94 K

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
274

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
554

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
887
394

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
512