MLeap:机器学习管道生产部署指南
2024-10-09 03:05:08作者:裘晴惠Vivianne
项目介绍
MLeap 是一款由 Combust 开发的开源工具,旨在简化数据科学家和工程师将基于 Spark 和 Scikit-learn 的机器学习管道部署到生产环境的过程。它提供了一种高效、便携且易于集成的方法,允许用户将训练好的模型转换成一个独立运行的格式,无需依赖于原始框架如 Spark 的上下文或第三方库(如 NumPy、Pandas 等)。
MLeap 构建在 JVM 上,支持 JSON 和 Protocol Buffers 两种序列化格式,并提供了高度兼容现有技术栈的能力,包括与 Spark 和 Scikit-learn 的紧密集成。
快速启动
要快速开始使用 MLeap,首先确保本地安装了 JDK 和适当的Scala环境。接下来,通过以下步骤在项目中引入 MLeap:
通过 SBT 引入
在你的 build.sbt 文件添加以下依赖:
libraryDependencies += "ml.combust.mleap" %% "mleap-runtime" % "0.23.1"
通过 Maven 引入
在你的 pom.xml 中加入:
<dependency>
<groupId>ml.combust.mleap</groupId>
<artifactId>mleap-runtime_2.12</artifactId>
<version>0.23.1</version>
</dependency>
示例:Spark 管道的创建与导出
创建并导出一个简单的 Spark ML 管道示例如下:
import ml.combust.bundle.BundleFile
import ml.combust.mleap.spark.SparkSupport._
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.{Binarizer, StringIndexer}
import org.apache.spark.sql._
val datasetPath = "/path/to/your/csv"
val df = spark.read.format("csv")
.option("header", "true")
.load(datasetPath)
.withColumn("test_double", col("test_double").cast("double"))
val indexer = new StringIndexer().setInputCol("category").setOutputCol("categoryIndexed")
val binarizer = new Binarizer().setInputCol("value").setOutputCol("valueBinarized").setThreshold(0.5)
val pipeline = new Pipeline().setStages(Array(indexer, binarizer))
val model = pipeline.fit(df)
val sbc = SparkBundleContext().withDataset(model.transform(df))
using(BundleFile("/path/to/save/pipeline.zip")) { bf =>
model.writeBundle.save(bf)(sbc).get
}
应用案例与最佳实践
MLeap特别适用于需要将复杂的机器学习模型无缝部署到资源受限的生产环境,比如微服务架构或是嵌入式系统中。最佳实践通常涉及:
- 模型标准化:确保所有模型都遵循统一的序列化标准。
- 性能调优:利用 MLeap 的轻量级执行引擎优化模型推理速度。
- 实时服务集成:将MLeap模型集成到API服务中,实现快速预测响应。
典型生态项目
虽然MLeap本身是一个强大的工具,但其生态系统还包括用于特定场景的集成和扩展,例如:
- MLeap Serving: 提供了一个服务化的解决方案,使得通过HTTP接口可以轻松访问和调用序列化后的模型进行预测。
- MLeap Spring Boot Integration: 支持快速构建基于Spring Boot的应用来托管MLeap模型服务。
- 社区贡献的插件: 如 TensorFlow 和 XGBoost 的集成,增强了模型的支持范围。
结合这些组件,开发者能够建立起从训练到生产的一条流畅管道,加速企业级机器学习应用的迭代周期。
请注意,随着项目版本更新,上述信息可能会有所变化。务必参考最新版本的官方文档以获取最准确的指导。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895