Volcano调度器对PreemptionPolicy的支持实现分析
背景介绍
在Kubernetes生态系统中,Volcano作为一款面向高性能计算场景的批处理调度器,其调度能力直接影响着集群资源利用率和作业执行效率。其中,优先级抢占机制是调度器的重要功能之一,它允许高优先级任务抢占低优先级任务的资源。Kubernetes原生支持通过PriorityClass定义优先级,并在1.19版本引入了preemptionPolicy字段,用于控制是否允许抢占行为。
问题发现
在Volcano的现有实现中,虽然支持基本的优先级抢占功能,但尚未完整实现Kubernetes PriorityClass中的preemptionPolicy策略。具体表现为:
- Volcano缓存中仅将PriorityClass简化为一个数值,丢失了preemptionPolicy等附加信息
- 调度逻辑中没有考虑preemptionPolicy为Never的情况
- 对Volcano Job级别的preemptionPolicy支持不完整
技术方案设计
核心修改点
-
缓存层改造:需要扩展Volcano调度器缓存中的PriorityClass表示方式,从单纯的数值扩展为包含preemptionPolicy等完整信息的结构体。
-
调度逻辑增强:
- 在抢占逻辑中增加preemptionPolicy检查
- 当preemptionPolicy为Never时,跳过该任务的抢占行为
- 同时考虑Pod级别和Job级别的preemptionPolicy
-
控制器协调:确保vc-controller在创建Pod时正确传递Job级别的PriorityClass配置,包括preemptionPolicy。
实现细节
在抢占逻辑的关键路径上,需要添加如下判断逻辑:
if task.Pod.Spec.PreemptionPolicy != nil && *task.Pod.Spec.PreemptionPolicy == v1.PreemptNever {
// 记录日志并跳过抢占
klog.V(3).Infof("Task %s/%s is not eligible to preempt other tasks due to preemptionPolicy is Never", task.Namespace, task.Name)
return
}
应用场景
preemptionPolicy的支持为集群管理员提供了更精细的资源管控能力:
- 关键任务保护:将关键业务设置为高优先级但禁止抢占,既保证资源分配又避免影响其他服务
- 服务质量分级:实现多级服务质量保障,区分可抢占和不可抢占的工作负载
- 资源利用率优化:允许非关键业务灵活抢占,提高整体资源利用率
实现考量
在技术方案讨论过程中,社区对几个关键问题进行了深入探讨:
-
Pod级别与Job级别的支持:虽然Kubernetes原生仅支持Pod级别,但考虑到Volcano主要面向批处理场景,最终决定同时支持两个级别的preemptionPolicy。
-
优先级继承机制:确保Job中创建的Pod能够正确继承Job的PriorityClass配置,包括preemptionPolicy。
-
与现有功能兼容:保持与Volcano已有抢占、回收等功能的兼容性,确保平滑升级。
总结
Volcano对preemptionPolicy的完整支持,使其调度能力更加贴近生产环境需求,为用户提供了更灵活的资源管控手段。这一改进不仅完善了与Kubernetes的兼容性,也增强了在高性能计算场景下的调度精细度。通过合理的preemptionPolicy配置,用户可以更好地平衡资源利用率和业务稳定性,满足多样化的业务需求。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00