SEC Insights 项目教程
1. 项目介绍
SEC Insights 是一个基于 LlamaIndex 的完整全栈应用,专门用于回答与 SEC 10-K 和 10-Q 文档相关的问题。该项目利用 Retrieval Augmented Generation (RAG) 技术,通过 LlamaIndex 的强大功能,从大量文档中提取信息并生成准确的答案。SEC Insights 不仅可以在本地运行,还可以部署在云端,适用于各种生产环境。
主要功能
- 文档问答:支持基于聊天界面的文档问答功能。
- 数据源引用:提供 LLM 响应所基于的源数据引用。
- PDF 查看器:支持 PDF 文档的查看和引用高亮显示。
- API 工具集成:使用 polygon.io 等 API 工具回答量化问题。
- 流式响应:通过 Server-Sent Events 实现 LLM 响应的流式传输。
2. 项目快速启动
环境准备
确保你已经安装了以下工具:
- Python 3.8+
- Docker
- Node.js
克隆项目
首先,克隆 SEC Insights 项目到本地:
git clone https://github.com/run-llama/sec-insights.git
cd sec-insights
安装依赖
在项目根目录下,安装 Python 和 Node.js 依赖:
# 安装 Python 依赖
pip install -r requirements.txt
# 安装 Node.js 依赖
cd frontend
npm install
启动项目
在项目根目录下,启动 Docker 容器并运行项目:
# 启动 Docker 容器
docker-compose up -d
# 启动后端服务
cd backend
python main.py
# 启动前端服务
cd ../frontend
npm run dev
访问应用
打开浏览器,访问 http://localhost:3000,即可开始使用 SEC Insights。
3. 应用案例和最佳实践
案例一:企业财务分析
SEC Insights 可以帮助企业财务分析师快速获取和分析 SEC 10-K 和 10-Q 文档中的关键信息。通过问答功能,分析师可以快速找到所需数据,并进行深入分析。
案例二:投资决策支持
投资者可以使用 SEC Insights 来获取上市公司的财务报告,并通过问答功能快速了解公司的财务状况和业务表现,从而做出更明智的投资决策。
最佳实践
- 数据源管理:定期更新和维护数据源,确保数据的准确性和时效性。
- 用户反馈:收集用户反馈,不断优化问答系统的准确性和用户体验。
- 性能优化:通过调整模型参数和优化代码,提升系统的响应速度和稳定性。
4. 典型生态项目
LlamaIndex
LlamaIndex 是 SEC Insights 的核心技术,提供了强大的文档检索和生成功能。通过 LlamaIndex,SEC Insights 能够高效地处理和分析大量文档数据。
FastAPI
FastAPI 是 SEC Insights 的后端框架,提供了高性能的 API 服务。FastAPI 的异步特性使得系统能够处理大量并发请求,确保系统的稳定性和响应速度。
React
React 是 SEC Insights 的前端框架,提供了丰富的用户界面和交互功能。通过 React,用户可以方便地与系统进行交互,获取所需信息。
Docker
Docker 是 SEC Insights 的容器化工具,确保项目在不同环境中的一致性和可移植性。通过 Docker,用户可以轻松地在本地或云端部署和运行项目。
通过以上模块的介绍,你可以快速了解并开始使用 SEC Insights 项目。希望这篇教程对你有所帮助!
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00