SEC Insights 项目教程
1. 项目介绍
SEC Insights 是一个基于 LlamaIndex 的完整全栈应用,专门用于回答与 SEC 10-K 和 10-Q 文档相关的问题。该项目利用 Retrieval Augmented Generation (RAG) 技术,通过 LlamaIndex 的强大功能,从大量文档中提取信息并生成准确的答案。SEC Insights 不仅可以在本地运行,还可以部署在云端,适用于各种生产环境。
主要功能
- 文档问答:支持基于聊天界面的文档问答功能。
- 数据源引用:提供 LLM 响应所基于的源数据引用。
- PDF 查看器:支持 PDF 文档的查看和引用高亮显示。
- API 工具集成:使用 polygon.io 等 API 工具回答量化问题。
- 流式响应:通过 Server-Sent Events 实现 LLM 响应的流式传输。
2. 项目快速启动
环境准备
确保你已经安装了以下工具:
- Python 3.8+
- Docker
- Node.js
克隆项目
首先,克隆 SEC Insights 项目到本地:
git clone https://github.com/run-llama/sec-insights.git
cd sec-insights
安装依赖
在项目根目录下,安装 Python 和 Node.js 依赖:
# 安装 Python 依赖
pip install -r requirements.txt
# 安装 Node.js 依赖
cd frontend
npm install
启动项目
在项目根目录下,启动 Docker 容器并运行项目:
# 启动 Docker 容器
docker-compose up -d
# 启动后端服务
cd backend
python main.py
# 启动前端服务
cd ../frontend
npm run dev
访问应用
打开浏览器,访问 http://localhost:3000,即可开始使用 SEC Insights。
3. 应用案例和最佳实践
案例一:企业财务分析
SEC Insights 可以帮助企业财务分析师快速获取和分析 SEC 10-K 和 10-Q 文档中的关键信息。通过问答功能,分析师可以快速找到所需数据,并进行深入分析。
案例二:投资决策支持
投资者可以使用 SEC Insights 来获取上市公司的财务报告,并通过问答功能快速了解公司的财务状况和业务表现,从而做出更明智的投资决策。
最佳实践
- 数据源管理:定期更新和维护数据源,确保数据的准确性和时效性。
- 用户反馈:收集用户反馈,不断优化问答系统的准确性和用户体验。
- 性能优化:通过调整模型参数和优化代码,提升系统的响应速度和稳定性。
4. 典型生态项目
LlamaIndex
LlamaIndex 是 SEC Insights 的核心技术,提供了强大的文档检索和生成功能。通过 LlamaIndex,SEC Insights 能够高效地处理和分析大量文档数据。
FastAPI
FastAPI 是 SEC Insights 的后端框架,提供了高性能的 API 服务。FastAPI 的异步特性使得系统能够处理大量并发请求,确保系统的稳定性和响应速度。
React
React 是 SEC Insights 的前端框架,提供了丰富的用户界面和交互功能。通过 React,用户可以方便地与系统进行交互,获取所需信息。
Docker
Docker 是 SEC Insights 的容器化工具,确保项目在不同环境中的一致性和可移植性。通过 Docker,用户可以轻松地在本地或云端部署和运行项目。
通过以上模块的介绍,你可以快速了解并开始使用 SEC Insights 项目。希望这篇教程对你有所帮助!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00