SEC Insights 项目教程
1. 项目介绍
SEC Insights 是一个基于 LlamaIndex 的完整全栈应用,专门用于回答与 SEC 10-K 和 10-Q 文档相关的问题。该项目利用 Retrieval Augmented Generation (RAG) 技术,通过 LlamaIndex 的强大功能,从大量文档中提取信息并生成准确的答案。SEC Insights 不仅可以在本地运行,还可以部署在云端,适用于各种生产环境。
主要功能
- 文档问答:支持基于聊天界面的文档问答功能。
- 数据源引用:提供 LLM 响应所基于的源数据引用。
- PDF 查看器:支持 PDF 文档的查看和引用高亮显示。
- API 工具集成:使用 polygon.io 等 API 工具回答量化问题。
- 流式响应:通过 Server-Sent Events 实现 LLM 响应的流式传输。
2. 项目快速启动
环境准备
确保你已经安装了以下工具:
- Python 3.8+
- Docker
- Node.js
克隆项目
首先,克隆 SEC Insights 项目到本地:
git clone https://github.com/run-llama/sec-insights.git
cd sec-insights
安装依赖
在项目根目录下,安装 Python 和 Node.js 依赖:
# 安装 Python 依赖
pip install -r requirements.txt
# 安装 Node.js 依赖
cd frontend
npm install
启动项目
在项目根目录下,启动 Docker 容器并运行项目:
# 启动 Docker 容器
docker-compose up -d
# 启动后端服务
cd backend
python main.py
# 启动前端服务
cd ../frontend
npm run dev
访问应用
打开浏览器,访问 http://localhost:3000,即可开始使用 SEC Insights。
3. 应用案例和最佳实践
案例一:企业财务分析
SEC Insights 可以帮助企业财务分析师快速获取和分析 SEC 10-K 和 10-Q 文档中的关键信息。通过问答功能,分析师可以快速找到所需数据,并进行深入分析。
案例二:投资决策支持
投资者可以使用 SEC Insights 来获取上市公司的财务报告,并通过问答功能快速了解公司的财务状况和业务表现,从而做出更明智的投资决策。
最佳实践
- 数据源管理:定期更新和维护数据源,确保数据的准确性和时效性。
- 用户反馈:收集用户反馈,不断优化问答系统的准确性和用户体验。
- 性能优化:通过调整模型参数和优化代码,提升系统的响应速度和稳定性。
4. 典型生态项目
LlamaIndex
LlamaIndex 是 SEC Insights 的核心技术,提供了强大的文档检索和生成功能。通过 LlamaIndex,SEC Insights 能够高效地处理和分析大量文档数据。
FastAPI
FastAPI 是 SEC Insights 的后端框架,提供了高性能的 API 服务。FastAPI 的异步特性使得系统能够处理大量并发请求,确保系统的稳定性和响应速度。
React
React 是 SEC Insights 的前端框架,提供了丰富的用户界面和交互功能。通过 React,用户可以方便地与系统进行交互,获取所需信息。
Docker
Docker 是 SEC Insights 的容器化工具,确保项目在不同环境中的一致性和可移植性。通过 Docker,用户可以轻松地在本地或云端部署和运行项目。
通过以上模块的介绍,你可以快速了解并开始使用 SEC Insights 项目。希望这篇教程对你有所帮助!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00