SEC Insights 项目教程
1. 项目介绍
SEC Insights 是一个基于 LlamaIndex 的完整全栈应用,专门用于回答与 SEC 10-K 和 10-Q 文档相关的问题。该项目利用 Retrieval Augmented Generation (RAG) 技术,通过 LlamaIndex 的强大功能,从大量文档中提取信息并生成准确的答案。SEC Insights 不仅可以在本地运行,还可以部署在云端,适用于各种生产环境。
主要功能
- 文档问答:支持基于聊天界面的文档问答功能。
- 数据源引用:提供 LLM 响应所基于的源数据引用。
- PDF 查看器:支持 PDF 文档的查看和引用高亮显示。
- API 工具集成:使用 polygon.io 等 API 工具回答量化问题。
- 流式响应:通过 Server-Sent Events 实现 LLM 响应的流式传输。
2. 项目快速启动
环境准备
确保你已经安装了以下工具:
- Python 3.8+
- Docker
- Node.js
克隆项目
首先,克隆 SEC Insights 项目到本地:
git clone https://github.com/run-llama/sec-insights.git
cd sec-insights
安装依赖
在项目根目录下,安装 Python 和 Node.js 依赖:
# 安装 Python 依赖
pip install -r requirements.txt
# 安装 Node.js 依赖
cd frontend
npm install
启动项目
在项目根目录下,启动 Docker 容器并运行项目:
# 启动 Docker 容器
docker-compose up -d
# 启动后端服务
cd backend
python main.py
# 启动前端服务
cd ../frontend
npm run dev
访问应用
打开浏览器,访问 http://localhost:3000
,即可开始使用 SEC Insights。
3. 应用案例和最佳实践
案例一:企业财务分析
SEC Insights 可以帮助企业财务分析师快速获取和分析 SEC 10-K 和 10-Q 文档中的关键信息。通过问答功能,分析师可以快速找到所需数据,并进行深入分析。
案例二:投资决策支持
投资者可以使用 SEC Insights 来获取上市公司的财务报告,并通过问答功能快速了解公司的财务状况和业务表现,从而做出更明智的投资决策。
最佳实践
- 数据源管理:定期更新和维护数据源,确保数据的准确性和时效性。
- 用户反馈:收集用户反馈,不断优化问答系统的准确性和用户体验。
- 性能优化:通过调整模型参数和优化代码,提升系统的响应速度和稳定性。
4. 典型生态项目
LlamaIndex
LlamaIndex 是 SEC Insights 的核心技术,提供了强大的文档检索和生成功能。通过 LlamaIndex,SEC Insights 能够高效地处理和分析大量文档数据。
FastAPI
FastAPI 是 SEC Insights 的后端框架,提供了高性能的 API 服务。FastAPI 的异步特性使得系统能够处理大量并发请求,确保系统的稳定性和响应速度。
React
React 是 SEC Insights 的前端框架,提供了丰富的用户界面和交互功能。通过 React,用户可以方便地与系统进行交互,获取所需信息。
Docker
Docker 是 SEC Insights 的容器化工具,确保项目在不同环境中的一致性和可移植性。通过 Docker,用户可以轻松地在本地或云端部署和运行项目。
通过以上模块的介绍,你可以快速了解并开始使用 SEC Insights 项目。希望这篇教程对你有所帮助!
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04