Metric3D模型加速与TensorRT部署实践
模型加速背景
Metric3D作为单目深度估计领域的重要模型,在实际应用中常面临推理速度的挑战。随着边缘计算设备如Jetson系列的普及,如何将模型高效部署到资源受限的设备上成为关键问题。TensorRT作为NVIDIA推出的高性能深度学习推理框架,能够显著提升模型在GPU上的执行效率。
ONNX转换实现
Metric3D模型最初基于PyTorch实现,要实现TensorRT加速,首先需要将模型转换为ONNX格式。转换过程主要涉及以下几个技术要点:
-
模型输入输出处理:需要明确模型的输入输出张量形状和数据类型。Metric3D的输入为RGB图像,输出为深度图。
-
动态轴设置:通过
dynamic_axes参数支持可变批量大小,增强部署灵活性。 -
预处理整合:将图像归一化等预处理操作整合到模型中,减少部署时的额外计算。
关键转换代码如下:
x = torch.randn(1, 3, 1088, 1920, device="cuda")
export_onnx_file = "weight/test.onnx"
torch.onnx.export(model.module, x, export_onnx_file,
opset_version=11,
do_constant_folding=True,
input_names=["input"],
output_names=["output"],
dynamic_axes={"input": {0: "batch_size"},
"output": {0: "batch_size"}})
推理流程优化
完成ONNX转换后,需要对整个推理流程进行优化:
-
图像预处理:包括颜色空间转换、尺寸调整、填充和归一化操作。这些操作需要与训练时保持一致。
-
后处理:包含深度图裁剪、插值还原到原始尺寸,以及根据相机内参生成点云数据。
-
性能优化:使用ONNX Runtime的CUDA执行提供者,充分利用GPU加速。
TensorRT部署实践
在Jetson边缘设备上部署时,可以进一步将ONNX模型转换为TensorRT引擎:
-
精度选择:Metric3D模型对精度较为敏感,建议使用混合精度而非纯FP16模式。
-
层融合优化:TensorRT会自动进行层融合等优化,减少内存访问和计算开销。
-
性能对比:实测表明,经过TensorRT优化的模型在Jetson设备上能实现显著的加速效果,同时保持与原始模型高度一致的精度(小数点后四位相同)。
实际应用建议
-
相机参数适配:部署时需要根据实际相机的内参调整相关参数,包括焦距、主点位置等。
-
内存管理:边缘设备内存有限,需合理控制输入图像分辨率和批量大小。
-
实时性优化:对于视频流应用,可以进一步优化流水线,使预处理、推理和后处理并行执行。
总结
通过ONNX中间表示和TensorRT加速,Metric3D模型能够在边缘设备上高效运行。这一技术路线不仅适用于深度估计任务,也为其他计算机视觉模型的边缘部署提供了参考。未来可探索更多量化技术和特定硬件优化,进一步提升性能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00