Metric3D项目中使用自定义相机模型进行ONNX推理的技术指南
2025-07-08 09:09:44作者:邬祺芯Juliet
引言
在3D视觉领域,Metric3D是一个重要的深度估计项目。本文将详细介绍如何在Metric3D项目中使用自定义相机模型进行ONNX推理,特别是针对输入分辨率调整和相机参数适配等常见问题。
当前ONNX模型的限制
Metric3D项目提供的ONNX模型目前存在以下限制:
- 不支持直接输入自定义相机参数
- 默认使用固定的规范相机焦距(1000.0)
- 输入分辨率固定为(616, 1064)
自定义相机参数的实现方案
基本原理
Metric3D模型输出的深度图是基于规范相机空间的,需要通过后处理转换为真实世界的度量深度。转换公式为:
真实深度 = 预测深度 × (相机焦距 / 规范相机焦距)
其中规范相机焦距默认为1000.0。
实现方法
- 模型导出修改:需要修改导出脚本,将相机投影矩阵P作为额外输入
- 后处理计算:在推理后根据实际相机焦距进行深度值缩放
关键代码实现如下:
# 修改后的模型导出类
class Metric3DExportModel(torch.nn.Module):
def __init__(self, meta_arch):
super().__init__()
self.meta_arch = meta_arch
self.register_buffer('rgb_mean', torch.tensor([123.675, 116.28, 103.53]).view(1, 3, 1, 1))
self.register_buffer('rgb_std', torch.tensor([58.395, 57.12, 57.375]).view(1, 3, 1, 1))
def forward(self, image, P):
image = (image - self.rgb_mean) / self.rgb_std
pred_depth = self.meta_arch.inference({'input': image})[0]
scale = (P[:, 0, 0] + P[:, 1, 1]) / 2 / 1000.0 # 1000.0是规范相机焦距
return pred_depth * scale.view(-1, 1, 1)
输入分辨率调整注意事项
虽然可以尝试调整输入分辨率,但需要注意:
- ViT网络结构可能对输入尺寸有特定要求
- 改变分辨率时需要同步调整相机内参矩阵
- 模型性能可能会受到影响
实验表明,小幅调整输入尺寸模型仍能工作,但度量精度需要验证。建议:
- 先在GPU环境下进行测试和参数调优
- 对于TensorRT部署,修改参数后需要清理缓存
实际应用建议
- 焦距参数:规范相机焦距1000.0可能需要根据场景调整,实际应用中可能需要微调
- 中心点坐标:虽然主要使用焦距参数,但cx、cy也应在完整投影变换中考虑
- 预处理:任何图像尺寸变换都应同步调整相机内参矩阵
结论
Metric3D项目通过合理的后处理可以实现自定义相机模型的深度估计,但需要注意规范相机空间与实际相机参数的转换关系。输入分辨率的调整需要谨慎验证,建议在实际应用前进行充分的测试和参数调优。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
213
2.21 K

暂无简介
Dart
521
115

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
578

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
86

Ascend Extension for PyTorch
Python
65
94

React Native鸿蒙化仓库
JavaScript
209
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399