Metric3D项目中使用自定义相机模型进行ONNX推理的技术指南
2025-07-08 23:54:59作者:邬祺芯Juliet
引言
在3D视觉领域,Metric3D是一个重要的深度估计项目。本文将详细介绍如何在Metric3D项目中使用自定义相机模型进行ONNX推理,特别是针对输入分辨率调整和相机参数适配等常见问题。
当前ONNX模型的限制
Metric3D项目提供的ONNX模型目前存在以下限制:
- 不支持直接输入自定义相机参数
- 默认使用固定的规范相机焦距(1000.0)
- 输入分辨率固定为(616, 1064)
自定义相机参数的实现方案
基本原理
Metric3D模型输出的深度图是基于规范相机空间的,需要通过后处理转换为真实世界的度量深度。转换公式为:
真实深度 = 预测深度 × (相机焦距 / 规范相机焦距)
其中规范相机焦距默认为1000.0。
实现方法
- 模型导出修改:需要修改导出脚本,将相机投影矩阵P作为额外输入
- 后处理计算:在推理后根据实际相机焦距进行深度值缩放
关键代码实现如下:
# 修改后的模型导出类
class Metric3DExportModel(torch.nn.Module):
def __init__(self, meta_arch):
super().__init__()
self.meta_arch = meta_arch
self.register_buffer('rgb_mean', torch.tensor([123.675, 116.28, 103.53]).view(1, 3, 1, 1))
self.register_buffer('rgb_std', torch.tensor([58.395, 57.12, 57.375]).view(1, 3, 1, 1))
def forward(self, image, P):
image = (image - self.rgb_mean) / self.rgb_std
pred_depth = self.meta_arch.inference({'input': image})[0]
scale = (P[:, 0, 0] + P[:, 1, 1]) / 2 / 1000.0 # 1000.0是规范相机焦距
return pred_depth * scale.view(-1, 1, 1)
输入分辨率调整注意事项
虽然可以尝试调整输入分辨率,但需要注意:
- ViT网络结构可能对输入尺寸有特定要求
- 改变分辨率时需要同步调整相机内参矩阵
- 模型性能可能会受到影响
实验表明,小幅调整输入尺寸模型仍能工作,但度量精度需要验证。建议:
- 先在GPU环境下进行测试和参数调优
- 对于TensorRT部署,修改参数后需要清理缓存
实际应用建议
- 焦距参数:规范相机焦距1000.0可能需要根据场景调整,实际应用中可能需要微调
- 中心点坐标:虽然主要使用焦距参数,但cx、cy也应在完整投影变换中考虑
- 预处理:任何图像尺寸变换都应同步调整相机内参矩阵
结论
Metric3D项目通过合理的后处理可以实现自定义相机模型的深度估计,但需要注意规范相机空间与实际相机参数的转换关系。输入分辨率的调整需要谨慎验证,建议在实际应用前进行充分的测试和参数调优。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1