Metric3D项目中使用自定义相机模型进行ONNX推理的技术指南
2025-07-08 19:58:38作者:邬祺芯Juliet
引言
在3D视觉领域,Metric3D是一个重要的深度估计项目。本文将详细介绍如何在Metric3D项目中使用自定义相机模型进行ONNX推理,特别是针对输入分辨率调整和相机参数适配等常见问题。
当前ONNX模型的限制
Metric3D项目提供的ONNX模型目前存在以下限制:
- 不支持直接输入自定义相机参数
- 默认使用固定的规范相机焦距(1000.0)
- 输入分辨率固定为(616, 1064)
自定义相机参数的实现方案
基本原理
Metric3D模型输出的深度图是基于规范相机空间的,需要通过后处理转换为真实世界的度量深度。转换公式为:
真实深度 = 预测深度 × (相机焦距 / 规范相机焦距)
其中规范相机焦距默认为1000.0。
实现方法
- 模型导出修改:需要修改导出脚本,将相机投影矩阵P作为额外输入
- 后处理计算:在推理后根据实际相机焦距进行深度值缩放
关键代码实现如下:
# 修改后的模型导出类
class Metric3DExportModel(torch.nn.Module):
def __init__(self, meta_arch):
super().__init__()
self.meta_arch = meta_arch
self.register_buffer('rgb_mean', torch.tensor([123.675, 116.28, 103.53]).view(1, 3, 1, 1))
self.register_buffer('rgb_std', torch.tensor([58.395, 57.12, 57.375]).view(1, 3, 1, 1))
def forward(self, image, P):
image = (image - self.rgb_mean) / self.rgb_std
pred_depth = self.meta_arch.inference({'input': image})[0]
scale = (P[:, 0, 0] + P[:, 1, 1]) / 2 / 1000.0 # 1000.0是规范相机焦距
return pred_depth * scale.view(-1, 1, 1)
输入分辨率调整注意事项
虽然可以尝试调整输入分辨率,但需要注意:
- ViT网络结构可能对输入尺寸有特定要求
- 改变分辨率时需要同步调整相机内参矩阵
- 模型性能可能会受到影响
实验表明,小幅调整输入尺寸模型仍能工作,但度量精度需要验证。建议:
- 先在GPU环境下进行测试和参数调优
- 对于TensorRT部署,修改参数后需要清理缓存
实际应用建议
- 焦距参数:规范相机焦距1000.0可能需要根据场景调整,实际应用中可能需要微调
- 中心点坐标:虽然主要使用焦距参数,但cx、cy也应在完整投影变换中考虑
- 预处理:任何图像尺寸变换都应同步调整相机内参矩阵
结论
Metric3D项目通过合理的后处理可以实现自定义相机模型的深度估计,但需要注意规范相机空间与实际相机参数的转换关系。输入分辨率的调整需要谨慎验证,建议在实际应用前进行充分的测试和参数调优。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134