Metric3D项目中使用自定义相机模型进行ONNX推理的技术指南
2025-07-08 16:16:47作者:邬祺芯Juliet
引言
在3D视觉领域,Metric3D是一个重要的深度估计项目。本文将详细介绍如何在Metric3D项目中使用自定义相机模型进行ONNX推理,特别是针对输入分辨率调整和相机参数适配等常见问题。
当前ONNX模型的限制
Metric3D项目提供的ONNX模型目前存在以下限制:
- 不支持直接输入自定义相机参数
- 默认使用固定的规范相机焦距(1000.0)
- 输入分辨率固定为(616, 1064)
自定义相机参数的实现方案
基本原理
Metric3D模型输出的深度图是基于规范相机空间的,需要通过后处理转换为真实世界的度量深度。转换公式为:
真实深度 = 预测深度 × (相机焦距 / 规范相机焦距)
其中规范相机焦距默认为1000.0。
实现方法
- 模型导出修改:需要修改导出脚本,将相机投影矩阵P作为额外输入
- 后处理计算:在推理后根据实际相机焦距进行深度值缩放
关键代码实现如下:
# 修改后的模型导出类
class Metric3DExportModel(torch.nn.Module):
def __init__(self, meta_arch):
super().__init__()
self.meta_arch = meta_arch
self.register_buffer('rgb_mean', torch.tensor([123.675, 116.28, 103.53]).view(1, 3, 1, 1))
self.register_buffer('rgb_std', torch.tensor([58.395, 57.12, 57.375]).view(1, 3, 1, 1))
def forward(self, image, P):
image = (image - self.rgb_mean) / self.rgb_std
pred_depth = self.meta_arch.inference({'input': image})[0]
scale = (P[:, 0, 0] + P[:, 1, 1]) / 2 / 1000.0 # 1000.0是规范相机焦距
return pred_depth * scale.view(-1, 1, 1)
输入分辨率调整注意事项
虽然可以尝试调整输入分辨率,但需要注意:
- ViT网络结构可能对输入尺寸有特定要求
- 改变分辨率时需要同步调整相机内参矩阵
- 模型性能可能会受到影响
实验表明,小幅调整输入尺寸模型仍能工作,但度量精度需要验证。建议:
- 先在GPU环境下进行测试和参数调优
- 对于TensorRT部署,修改参数后需要清理缓存
实际应用建议
- 焦距参数:规范相机焦距1000.0可能需要根据场景调整,实际应用中可能需要微调
- 中心点坐标:虽然主要使用焦距参数,但cx、cy也应在完整投影变换中考虑
- 预处理:任何图像尺寸变换都应同步调整相机内参矩阵
结论
Metric3D项目通过合理的后处理可以实现自定义相机模型的深度估计,但需要注意规范相机空间与实际相机参数的转换关系。输入分辨率的调整需要谨慎验证,建议在实际应用前进行充分的测试和参数调优。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
279
2.58 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
303
Ascend Extension for PyTorch
Python
107
138
暂无简介
Dart
571
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
601
166
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
608
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
299
39