Metric3D项目中使用自定义相机模型进行ONNX推理的技术指南
2025-07-08 23:54:59作者:邬祺芯Juliet
引言
在3D视觉领域,Metric3D是一个重要的深度估计项目。本文将详细介绍如何在Metric3D项目中使用自定义相机模型进行ONNX推理,特别是针对输入分辨率调整和相机参数适配等常见问题。
当前ONNX模型的限制
Metric3D项目提供的ONNX模型目前存在以下限制:
- 不支持直接输入自定义相机参数
- 默认使用固定的规范相机焦距(1000.0)
- 输入分辨率固定为(616, 1064)
自定义相机参数的实现方案
基本原理
Metric3D模型输出的深度图是基于规范相机空间的,需要通过后处理转换为真实世界的度量深度。转换公式为:
真实深度 = 预测深度 × (相机焦距 / 规范相机焦距)
其中规范相机焦距默认为1000.0。
实现方法
- 模型导出修改:需要修改导出脚本,将相机投影矩阵P作为额外输入
- 后处理计算:在推理后根据实际相机焦距进行深度值缩放
关键代码实现如下:
# 修改后的模型导出类
class Metric3DExportModel(torch.nn.Module):
def __init__(self, meta_arch):
super().__init__()
self.meta_arch = meta_arch
self.register_buffer('rgb_mean', torch.tensor([123.675, 116.28, 103.53]).view(1, 3, 1, 1))
self.register_buffer('rgb_std', torch.tensor([58.395, 57.12, 57.375]).view(1, 3, 1, 1))
def forward(self, image, P):
image = (image - self.rgb_mean) / self.rgb_std
pred_depth = self.meta_arch.inference({'input': image})[0]
scale = (P[:, 0, 0] + P[:, 1, 1]) / 2 / 1000.0 # 1000.0是规范相机焦距
return pred_depth * scale.view(-1, 1, 1)
输入分辨率调整注意事项
虽然可以尝试调整输入分辨率,但需要注意:
- ViT网络结构可能对输入尺寸有特定要求
- 改变分辨率时需要同步调整相机内参矩阵
- 模型性能可能会受到影响
实验表明,小幅调整输入尺寸模型仍能工作,但度量精度需要验证。建议:
- 先在GPU环境下进行测试和参数调优
- 对于TensorRT部署,修改参数后需要清理缓存
实际应用建议
- 焦距参数:规范相机焦距1000.0可能需要根据场景调整,实际应用中可能需要微调
- 中心点坐标:虽然主要使用焦距参数,但cx、cy也应在完整投影变换中考虑
- 预处理:任何图像尺寸变换都应同步调整相机内参矩阵
结论
Metric3D项目通过合理的后处理可以实现自定义相机模型的深度估计,但需要注意规范相机空间与实际相机参数的转换关系。输入分辨率的调整需要谨慎验证,建议在实际应用前进行充分的测试和参数调优。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137