TorchQuantum安装与使用指南
2024-09-25 21:47:31作者:裘旻烁
项目概述
TorchQuantum 是一个基于PyTorch的量子计算框架,旨在模拟量子电路于经典硬件上。它支持GPU上的状态向量模拟和脉冲模拟,能够扩展到模拟30个以上量子比特的规模。适合量子算法设计、参数化量子电路训练、量子最优控制、量子机器学习以及量子神经网络的研究者。
目录结构及介绍
TorchQuantum的仓库结构清晰,便于开发者和研究人员快速定位所需内容:
LICENSE: 许可证文件,表明该项目遵循MIT许可证。README.md: 项目简介,包括基本功能、特点和快速入门示例。flake8: 代码风格检查配置。gitignore: Git忽略文件,定义了哪些文件或目录不应被版本控制系统跟踪。pre-commit-config.yaml: 预提交钩子配置,用于自动化代码风格校验。requirements.txt: 项目的依赖库列表。setup.py: 安装脚本,用于设置和分发项目。torchquantum: 核心源码包,包含了量子电路操作、核心类和函数。functional.py: 提供量子门的操作函数。operators.py: 定义了量子门的类实现。layers.py: 包含量子电路层的模板。measure.py: 管理量子态测量并转换为经典信息。graph.py: 用于静态模式下的量子门图操作。plugins: 子目录包含用于量子计算机部署的转换器和处理器(如IBM Qiskit)。
examples: 示例代码集合,展示了如何在实际中应用TorchQuantum进行量子模型的构建和训练。tests: 测试目录,存放着确保项目稳定性的测试用例。
启动文件介绍
在TorchQuantum中,并没有明确标记为“启动文件”的单一文件,而是通过导入库和创建相应的量子电路来开始工作。一般而言,用户的入口点是他们自己的Python脚本,这些脚本通常从导入torchquantum开始,并随后构建量子电路和执行相关运算。例如:
import torchquantum as tq
# 创建量子设备
qdev = tq.QuantumDevice(n_wires=2, bsz=5, device="cpu", record_op=True)
# 应用量子门
qdev.h(0)
qdev.cnot([0, 1])
项目的配置文件介绍
TorchQuantum并没有一个传统意义上的、集中的配置文件。其配置主要通过代码中设置参数实现,比如在创建QuantumDevice实例时指定量子线路的参数,或者在设置环境变量时对运行环境做出调整。对于依赖项管理,则依靠requirements.txt文件来定义所需的第三方库及其版本。
开发过程中,若需定制化配置,开发者通常会在自己的项目中创建配置脚本或利用环境变量来满足特定需求,而不是直接修改TorchQuantum本身的内部配置。
要开始使用TorchQuantum,首先通过Git克隆仓库,并按照提供的安装指示进行操作。之后,参考例子和API文档,即可着手量子电路的设计与模拟。记得激活适当的Python虚拟环境,安装必要的依赖,并充分利用项目内的示例代码作为起点。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
169
190
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
374
3.2 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
262
92