TorchQuantum 使用教程
2024-09-20 20:59:25作者:凤尚柏Louis
项目介绍
TorchQuantum 是一个基于 PyTorch 的量子计算框架,旨在模拟量子计算在经典硬件上的实现。它支持状态向量模拟和脉冲模拟,并且能够在 GPU 上进行扩展,最多可以模拟 30 个量子比特。TorchQuantum 特别适用于量子算法设计、参数化量子电路训练、量子最优控制、量子机器学习以及量子神经网络等领域。
项目快速启动
安装
首先,克隆项目仓库并安装 TorchQuantum:
git clone https://github.com/mit-han-lab/torchquantum.git
cd torchquantum
pip install --editable .
基本使用
以下是一个简单的量子电路模拟示例:
import torchquantum as tq
import torchquantum.functional as tqf
# 创建一个量子设备
qdev = tq.QuantumDevice(n_wires=2, bsz=5, device="cpu", record_op=True)
# 应用量子门
qdev.h(wires=0)
qdev.cnot(wires=[0, 1])
# 使用 tqf 应用量子门
tqf.h(qdev, wires=1)
tqf.x(qdev, wires=1)
# 打印当前状态
print(qdev)
# 测量量子态
print(tq.measure(qdev, n_shots=1024))
应用案例和最佳实践
量子神经网络
TorchQuantum 可以用于构建和训练量子神经网络。以下是一个简单的量子神经网络模型示例:
import torch.nn as nn
import torch.nn.functional as F
import torchquantum as tq
import torchquantum.functional as tqf
class QFCModel(nn.Module):
def __init__(self):
super().__init__()
self.n_wires = 4
self.measure = tq.MeasureAll(tq.PauliZ)
self.encoder_gates = [tqf.rx] * 4 + [tqf.ry] * 4 + [tqf.rz] * 4 + [tqf.rx] * 4
self.rx0 = tq.RX(has_params=True, trainable=True)
self.ry0 = tq.RY(has_params=True, trainable=True)
self.rz0 = tq.RZ(has_params=True, trainable=True)
self.crx0 = tq.CRX(has_params=True, trainable=True)
def forward(self, x):
bsz = x.shape[0]
x = F.avg_pool2d(x, 6).view(bsz, 16)
qdev = tq.QuantumDevice(n_wires=self.n_wires, bsz=bsz, device=x.device)
for k, gate in enumerate(self.encoder_gates):
gate(qdev, wires=k % self.n_wires, params=x[:, k])
self.rx0(qdev, wires=0)
self.ry0(qdev, wires=1)
self.rz0(qdev, wires=3)
self.crx0(qdev, wires=[0, 2])
qdev.h(wires=3)
qdev.sx(wires=2)
qdev.cnot(wires=[3, 0])
qdev.qubitunitary(wires=[1, 2], params=[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1j], [0, 0, -1j, 0]])
x = self.measure(qdev).reshape(bsz, 2, 2)
x = x.sum(-1).squeeze()
x = F.log_softmax(x, dim=1)
return x
VQE 示例
TorchQuantum 还可以用于执行变分量子本征求解(VQE)任务。以下是一个简单的 VQE 示例:
cd examples/vqe
python vqe.py
典型生态项目
PyTorch
TorchQuantum 与 PyTorch 深度集成,支持自动微分和动态计算图,使得量子计算与经典计算的混合模型构建变得更加容易。
Qiskit
TorchQuantum 提供了与 Qiskit 的接口,方便用户将 TorchQuantum 中的量子电路部署到真实的量子设备上,如 IBMQ。
通过本教程,您应该已经掌握了 TorchQuantum 的基本使用方法,并了解了其在量子神经网络和 VQE 等领域的应用。希望您能进一步探索 TorchQuantum 的更多功能,并在实际项目中应用它。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0124AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
228
2.28 K

暂无简介
Dart
527
116

React Native鸿蒙化仓库
JavaScript
214
288

Ascend Extension for PyTorch
Python
69
101

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
989
586

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
102

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197