QwenLM/Qwen项目中LoRA微调后量化模型测试问题解析
问题背景
在使用QwenLM/Qwen大语言模型进行LoRA微调后,用户在执行模型合并、量化操作时遇到了测试实例报错的问题。具体表现为在复制相关文件到目标目录后运行测试时出现错误,无论是否覆盖已有文件都会出现相同问题。
问题现象分析
从用户提供的截图可以看出,在执行测试实例时系统抛出了异常。经过排查发现,问题主要出现在量化模型中的config.json文件上。当用户尝试将量化后的模型文件复制到测试目录时,如果包含config.json文件就会导致测试失败。
解决方案验证
经过多次测试验证,发现以下两种解决方案:
-
不拷贝量化模型中的config.json文件:这是最直接的解决方案,在复制文件时排除config.json即可正常运行测试实例。
-
使用特定依赖版本:当使用特定版本的依赖环境时,即使包含config.json文件也能正常运行。用户提供了一个完整的依赖列表,其中关键组件版本包括:
- transformers 4.37.2
- peft 0.7.1
- torch 2.2.0
- auto_gptq 0.7.1
- optimum 1.17.1
技术原理探讨
这个问题可能源于以下几个技术原因:
-
配置文件冲突:量化后的config.json可能包含与原始模型不兼容的配置项,导致加载失败。
-
版本兼容性问题:不同版本的模型加载器对配置文件的处理方式可能存在差异,导致某些版本下可以兼容而其他版本不行。
-
量化参数保存:量化过程中可能修改了模型配置,但这些修改不一定被所有下游工具正确处理。
最佳实践建议
基于此问题的分析,建议用户在LoRA微调和量化后测试时:
-
优先考虑不复制量化模型的config.json文件,使用原始模型的配置文件。
-
如果必须使用量化后的配置文件,应确保整个工具链的版本兼容性,可以参考用户提供的依赖版本。
-
在模型量化前后对比config.json的差异,找出可能导致问题的配置项。
-
对于生产环境,建议建立完整的测试流程,包括配置文件的验证环节。
总结
QwenLM/Qwen项目中的LoRA微调和量化流程整体上是稳定的,但在特定操作顺序和文件处理上需要注意细节。通过理解模型配置的作用和版本兼容性问题,用户可以更顺利地完成从微调到量化的全流程工作。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0315- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









