QwenLM/Qwen模型SFT后推理速度下降问题分析与优化建议
2025-05-12 13:06:35作者:段琳惟
问题现象
在使用QwenLM/Qwen开源大模型项目时,用户报告了一个性能相关的问题:当对Qwen-1.8B基础模型进行监督式微调(SFT)后,模型的推理速度出现了明显下降,从原来的每秒50+ token降至30+ token左右。这一性能差异在相同的测试环境和评估脚本下得到了验证。
可能原因分析
-
LoRA适配器未合并:如果微调时使用了LoRA(低秩适配)技术但未将适配器权重合并回基础模型,推理时需要同时加载基础模型和适配器,这会增加计算开销。
-
缓存机制配置:模型配置文件(config.json)中的
use_cache
参数设置可能发生了变化。Transformer模型的KV缓存对推理速度有显著影响。 -
序列长度设置:用户在微调时将
model_max_length
设置为4096,较长的序列长度会影响内存访问模式和计算效率。 -
精度变化:微调过程中可能引入了混合精度训练,但推理时未做相应优化。
-
模型结构变化:某些微调方法可能修改了模型架构(如添加额外层),增加了计算复杂度。
解决方案与优化建议
-
LoRA权重合并:
- 如果使用了LoRA微调,建议将适配器权重合并回基础模型
- 使用官方提供的合并脚本或huggingface的
merge_and_unload()
方法 - 合并后保存为完整模型再进行推理测试
-
检查缓存配置:
- 验证config.json中的
use_cache
是否为True - 确保推理时启用了KV缓存机制
- 示例配置检查项:
{ "use_cache": true, "torch_dtype": "float16", ... }
- 验证config.json中的
-
推理优化技术:
- 启用Flash Attention(如果硬件支持)
- 使用
torch.compile()
对模型进行图优化 - 考虑量化为8-bit或4-bit进行推理
-
批处理与并行化:
- 适当增加批处理大小以提高GPU利用率
- 使用Tensor Parallelism或Pipeline Parallelism进行分布式推理
-
环境一致性检查:
- 确保测试时使用相同的PyTorch和CUDA版本
- 检查GPU内存使用情况,避免内存交换
- 使用
torch.backends.cudnn.benchmark = True
启用CuDNN自动调优
实施步骤示例
- LoRA合并(如适用):
from peft import PeftModel
base_model = "Qwen/Qwen-1.8B"
peft_model = "path_to_sft_checkpoint"
merged_model = PeftModel.from_pretrained(base_model, peft_model).merge_and_unload()
merged_model.save_pretrained("qwen-1.8b-merged")
- 优化推理配置:
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
"qwen-1.8b-merged",
torch_dtype=torch.float16,
device_map="auto",
use_cache=True
)
model.eval()
- 性能测试验证:
with torch.no_grad():
# 使用与原始测试相同的输入和配置
outputs = model.generate(input_ids, max_new_tokens=100, do_sample=False)
总结
QwenLM/Qwen模型在SFT后出现推理速度下降通常是可优化的技术问题。通过合并LoRA权重、检查缓存配置、应用推理优化技术等手段,大多数情况下可以恢复甚至超过原始模型的推理性能。建议用户在模型微调前后保持一致的测试环境,并使用系统化的性能分析方法定位瓶颈。对于生产环境部署,还可以考虑更深入的优化如模型量化、定制内核等高级技术。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0297- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5