QwenLM/Qwen模型SFT后推理速度下降问题分析与优化建议
2025-05-12 15:17:28作者:段琳惟
问题现象
在使用QwenLM/Qwen开源大模型项目时,用户报告了一个性能相关的问题:当对Qwen-1.8B基础模型进行监督式微调(SFT)后,模型的推理速度出现了明显下降,从原来的每秒50+ token降至30+ token左右。这一性能差异在相同的测试环境和评估脚本下得到了验证。
可能原因分析
-
LoRA适配器未合并:如果微调时使用了LoRA(低秩适配)技术但未将适配器权重合并回基础模型,推理时需要同时加载基础模型和适配器,这会增加计算开销。
-
缓存机制配置:模型配置文件(config.json)中的
use_cache参数设置可能发生了变化。Transformer模型的KV缓存对推理速度有显著影响。 -
序列长度设置:用户在微调时将
model_max_length设置为4096,较长的序列长度会影响内存访问模式和计算效率。 -
精度变化:微调过程中可能引入了混合精度训练,但推理时未做相应优化。
-
模型结构变化:某些微调方法可能修改了模型架构(如添加额外层),增加了计算复杂度。
解决方案与优化建议
-
LoRA权重合并:
- 如果使用了LoRA微调,建议将适配器权重合并回基础模型
- 使用官方提供的合并脚本或huggingface的
merge_and_unload()方法 - 合并后保存为完整模型再进行推理测试
-
检查缓存配置:
- 验证config.json中的
use_cache是否为True - 确保推理时启用了KV缓存机制
- 示例配置检查项:
{ "use_cache": true, "torch_dtype": "float16", ... }
- 验证config.json中的
-
推理优化技术:
- 启用Flash Attention(如果硬件支持)
- 使用
torch.compile()对模型进行图优化 - 考虑量化为8-bit或4-bit进行推理
-
批处理与并行化:
- 适当增加批处理大小以提高GPU利用率
- 使用Tensor Parallelism或Pipeline Parallelism进行分布式推理
-
环境一致性检查:
- 确保测试时使用相同的PyTorch和CUDA版本
- 检查GPU内存使用情况,避免内存交换
- 使用
torch.backends.cudnn.benchmark = True启用CuDNN自动调优
实施步骤示例
- LoRA合并(如适用):
from peft import PeftModel
base_model = "Qwen/Qwen-1.8B"
peft_model = "path_to_sft_checkpoint"
merged_model = PeftModel.from_pretrained(base_model, peft_model).merge_and_unload()
merged_model.save_pretrained("qwen-1.8b-merged")
- 优化推理配置:
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
"qwen-1.8b-merged",
torch_dtype=torch.float16,
device_map="auto",
use_cache=True
)
model.eval()
- 性能测试验证:
with torch.no_grad():
# 使用与原始测试相同的输入和配置
outputs = model.generate(input_ids, max_new_tokens=100, do_sample=False)
总结
QwenLM/Qwen模型在SFT后出现推理速度下降通常是可优化的技术问题。通过合并LoRA权重、检查缓存配置、应用推理优化技术等手段,大多数情况下可以恢复甚至超过原始模型的推理性能。建议用户在模型微调前后保持一致的测试环境,并使用系统化的性能分析方法定位瓶颈。对于生产环境部署,还可以考虑更深入的优化如模型量化、定制内核等高级技术。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
终极Emoji表情配置指南:从config.yaml到一键部署全流程如何用Aider AI助手快速开发游戏:从Pong到2048的完整指南从崩溃到重生:Anki参数重置功能深度优化方案 RuoYi-Cloud-Plus 微服务通用权限管理系统技术文档 GoldenLayout 布局配置完全指南 Tencent Cloud IM Server SDK Java 技术文档 解决JumpServer v4.10.1版本Windows发布机部署失败问题 最完整2025版!SeedVR2模型家族(3B/7B)选型与性能优化指南2025微信机器人新范式:从消息自动回复到智能助理的进化之路3分钟搞定!团子翻译器接入Gemini模型超详细指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
392
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
582
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
164
暂无简介
Dart
765
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350