QwenLM/Qwen模型SFT后推理速度下降问题分析与优化建议
2025-05-12 00:16:18作者:段琳惟
问题现象
在使用QwenLM/Qwen开源大模型项目时,用户报告了一个性能相关的问题:当对Qwen-1.8B基础模型进行监督式微调(SFT)后,模型的推理速度出现了明显下降,从原来的每秒50+ token降至30+ token左右。这一性能差异在相同的测试环境和评估脚本下得到了验证。
可能原因分析
-
LoRA适配器未合并:如果微调时使用了LoRA(低秩适配)技术但未将适配器权重合并回基础模型,推理时需要同时加载基础模型和适配器,这会增加计算开销。
-
缓存机制配置:模型配置文件(config.json)中的
use_cache参数设置可能发生了变化。Transformer模型的KV缓存对推理速度有显著影响。 -
序列长度设置:用户在微调时将
model_max_length设置为4096,较长的序列长度会影响内存访问模式和计算效率。 -
精度变化:微调过程中可能引入了混合精度训练,但推理时未做相应优化。
-
模型结构变化:某些微调方法可能修改了模型架构(如添加额外层),增加了计算复杂度。
解决方案与优化建议
-
LoRA权重合并:
- 如果使用了LoRA微调,建议将适配器权重合并回基础模型
- 使用官方提供的合并脚本或huggingface的
merge_and_unload()方法 - 合并后保存为完整模型再进行推理测试
-
检查缓存配置:
- 验证config.json中的
use_cache是否为True - 确保推理时启用了KV缓存机制
- 示例配置检查项:
{ "use_cache": true, "torch_dtype": "float16", ... }
- 验证config.json中的
-
推理优化技术:
- 启用Flash Attention(如果硬件支持)
- 使用
torch.compile()对模型进行图优化 - 考虑量化为8-bit或4-bit进行推理
-
批处理与并行化:
- 适当增加批处理大小以提高GPU利用率
- 使用Tensor Parallelism或Pipeline Parallelism进行分布式推理
-
环境一致性检查:
- 确保测试时使用相同的PyTorch和CUDA版本
- 检查GPU内存使用情况,避免内存交换
- 使用
torch.backends.cudnn.benchmark = True启用CuDNN自动调优
实施步骤示例
- LoRA合并(如适用):
from peft import PeftModel
base_model = "Qwen/Qwen-1.8B"
peft_model = "path_to_sft_checkpoint"
merged_model = PeftModel.from_pretrained(base_model, peft_model).merge_and_unload()
merged_model.save_pretrained("qwen-1.8b-merged")
- 优化推理配置:
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
"qwen-1.8b-merged",
torch_dtype=torch.float16,
device_map="auto",
use_cache=True
)
model.eval()
- 性能测试验证:
with torch.no_grad():
# 使用与原始测试相同的输入和配置
outputs = model.generate(input_ids, max_new_tokens=100, do_sample=False)
总结
QwenLM/Qwen模型在SFT后出现推理速度下降通常是可优化的技术问题。通过合并LoRA权重、检查缓存配置、应用推理优化技术等手段,大多数情况下可以恢复甚至超过原始模型的推理性能。建议用户在模型微调前后保持一致的测试环境,并使用系统化的性能分析方法定位瓶颈。对于生产环境部署,还可以考虑更深入的优化如模型量化、定制内核等高级技术。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
464
3.46 K
Ascend Extension for PyTorch
Python
273
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692