首页
/ Glances项目内存泄漏问题分析与解决方案

Glances项目内存泄漏问题分析与解决方案

2025-05-06 03:13:27作者:袁立春Spencer

问题背景

Glances是一款跨平台的系统监控工具,以其丰富的功能和直观的界面受到广泛欢迎。近期在Glances 4.1.2版本中,用户报告了一个内存泄漏问题,表现为容器内存使用量随时间持续增长。这一问题在多个独立环境中重现,引起了开发团队的重视。

问题现象

用户通过Docker容器部署Glances后,观察到内存使用量呈现以下增长模式:

  • 初始运行时内存使用约65MB
  • 1小时后增长至约100MB
  • 24小时后达到约130MB
  • 持续运行数日后可超过200MB

这种内存增长趋势在三个独立环境中均被观察到,表明问题具有普遍性而非特定环境导致。

问题定位

开发团队通过深入分析,使用Python内存分析工具mem_top对Glances进程进行了详细诊断。关键发现如下:

  1. 进程缓存未清理:Glances的processlist_cache字典以进程ID(PID)为键存储进程信息,但未及时清理已终止进程的缓存项。

  2. Linux PID特性:在64位Linux系统上,PID最大值可达约400万(2^22),导致潜在缓存项数量庞大。

  3. 内存增长模式:诊断数据显示,随着时间推移,dict和list类型对象数量持续增加,特别是与进程缓存相关的数据结构。

解决方案

开发团队针对这一问题实施了以下修复措施:

  1. 缓存清理机制:在GlancesProcess类的update方法中,添加了缓存清理逻辑。具体实现为:
# 获取当前运行中的进程ID列表
pids_running = [p['pid'] for p in processlist]

# 获取缓存中的所有PID
pids_cached = [p for p in self.processlist_cache.keys()]

# 清理已终止进程的缓存
for pid in pids_cached:
    if pid not in pids_running:
        self.processlist_cache.pop(pid, None)
  1. 版本发布:该修复已包含在Glances 4.2.1版本中发布。

验证结果

修复后验证显示内存使用趋于稳定:

  • 初始内存:约70MB
  • 1小时后:约71MB
  • 数小时后波动范围保持在70-75MB之间

内存分析工具显示,dict和list类型对象数量不再持续增长,证明缓存清理机制有效。

技术启示

  1. 长期运行服务的内存管理:对于系统监控这类长期运行的服务,必须特别注意缓存和临时数据结构的生命周期管理。

  2. PID处理的特殊性:在Linux环境下处理进程信息时,需要考虑PID的循环使用特性,避免基于PID的缓存无限增长。

  3. 监控工具的自监控:即使是系统监控工具本身,也需要完善的自我监控机制,确保其资源使用在合理范围内。

用户建议

对于使用Glances的用户,特别是通过容器部署的场景:

  1. 升级至4.2.1或更高版本以获取内存泄漏修复。

  2. 定期监控Glances自身的内存使用情况,可通过docker stats或类似工具实现。

  3. 对于无法立即升级的环境,可考虑设置定期重启策略作为临时解决方案。

  4. 在配置文件中合理设置history_size参数,平衡历史数据需求和内存使用。

通过这次问题的发现和解决,Glances项目在内存管理方面得到了显著改进,为用户提供了更稳定的系统监控体验。

登录后查看全文
热门项目推荐
相关项目推荐