Glances项目内存泄漏问题分析与解决方案
问题背景
Glances是一款跨平台的系统监控工具,以其丰富的功能和直观的界面受到广泛欢迎。近期在Glances 4.1.2版本中,用户报告了一个内存泄漏问题,表现为容器内存使用量随时间持续增长。这一问题在多个独立环境中重现,引起了开发团队的重视。
问题现象
用户通过Docker容器部署Glances后,观察到内存使用量呈现以下增长模式:
- 初始运行时内存使用约65MB
- 1小时后增长至约100MB
- 24小时后达到约130MB
- 持续运行数日后可超过200MB
这种内存增长趋势在三个独立环境中均被观察到,表明问题具有普遍性而非特定环境导致。
问题定位
开发团队通过深入分析,使用Python内存分析工具mem_top对Glances进程进行了详细诊断。关键发现如下:
-
进程缓存未清理:Glances的processlist_cache字典以进程ID(PID)为键存储进程信息,但未及时清理已终止进程的缓存项。
-
Linux PID特性:在64位Linux系统上,PID最大值可达约400万(2^22),导致潜在缓存项数量庞大。
-
内存增长模式:诊断数据显示,随着时间推移,dict和list类型对象数量持续增加,特别是与进程缓存相关的数据结构。
解决方案
开发团队针对这一问题实施了以下修复措施:
- 缓存清理机制:在GlancesProcess类的update方法中,添加了缓存清理逻辑。具体实现为:
# 获取当前运行中的进程ID列表
pids_running = [p['pid'] for p in processlist]
# 获取缓存中的所有PID
pids_cached = [p for p in self.processlist_cache.keys()]
# 清理已终止进程的缓存
for pid in pids_cached:
if pid not in pids_running:
self.processlist_cache.pop(pid, None)
- 版本发布:该修复已包含在Glances 4.2.1版本中发布。
验证结果
修复后验证显示内存使用趋于稳定:
- 初始内存:约70MB
- 1小时后:约71MB
- 数小时后波动范围保持在70-75MB之间
内存分析工具显示,dict和list类型对象数量不再持续增长,证明缓存清理机制有效。
技术启示
-
长期运行服务的内存管理:对于系统监控这类长期运行的服务,必须特别注意缓存和临时数据结构的生命周期管理。
-
PID处理的特殊性:在Linux环境下处理进程信息时,需要考虑PID的循环使用特性,避免基于PID的缓存无限增长。
-
监控工具的自监控:即使是系统监控工具本身,也需要完善的自我监控机制,确保其资源使用在合理范围内。
用户建议
对于使用Glances的用户,特别是通过容器部署的场景:
-
升级至4.2.1或更高版本以获取内存泄漏修复。
-
定期监控Glances自身的内存使用情况,可通过docker stats或类似工具实现。
-
对于无法立即升级的环境,可考虑设置定期重启策略作为临时解决方案。
-
在配置文件中合理设置history_size参数,平衡历史数据需求和内存使用。
通过这次问题的发现和解决,Glances项目在内存管理方面得到了显著改进,为用户提供了更稳定的系统监控体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00