Glances项目内存泄漏问题分析与解决方案
问题背景
Glances是一款跨平台的系统监控工具,以其丰富的功能和直观的界面受到广泛欢迎。近期在Glances 4.1.2版本中,用户报告了一个内存泄漏问题,表现为容器内存使用量随时间持续增长。这一问题在多个独立环境中重现,引起了开发团队的重视。
问题现象
用户通过Docker容器部署Glances后,观察到内存使用量呈现以下增长模式:
- 初始运行时内存使用约65MB
- 1小时后增长至约100MB
- 24小时后达到约130MB
- 持续运行数日后可超过200MB
这种内存增长趋势在三个独立环境中均被观察到,表明问题具有普遍性而非特定环境导致。
问题定位
开发团队通过深入分析,使用Python内存分析工具mem_top对Glances进程进行了详细诊断。关键发现如下:
-
进程缓存未清理:Glances的processlist_cache字典以进程ID(PID)为键存储进程信息,但未及时清理已终止进程的缓存项。
-
Linux PID特性:在64位Linux系统上,PID最大值可达约400万(2^22),导致潜在缓存项数量庞大。
-
内存增长模式:诊断数据显示,随着时间推移,dict和list类型对象数量持续增加,特别是与进程缓存相关的数据结构。
解决方案
开发团队针对这一问题实施了以下修复措施:
- 缓存清理机制:在GlancesProcess类的update方法中,添加了缓存清理逻辑。具体实现为:
# 获取当前运行中的进程ID列表
pids_running = [p['pid'] for p in processlist]
# 获取缓存中的所有PID
pids_cached = [p for p in self.processlist_cache.keys()]
# 清理已终止进程的缓存
for pid in pids_cached:
if pid not in pids_running:
self.processlist_cache.pop(pid, None)
- 版本发布:该修复已包含在Glances 4.2.1版本中发布。
验证结果
修复后验证显示内存使用趋于稳定:
- 初始内存:约70MB
- 1小时后:约71MB
- 数小时后波动范围保持在70-75MB之间
内存分析工具显示,dict和list类型对象数量不再持续增长,证明缓存清理机制有效。
技术启示
-
长期运行服务的内存管理:对于系统监控这类长期运行的服务,必须特别注意缓存和临时数据结构的生命周期管理。
-
PID处理的特殊性:在Linux环境下处理进程信息时,需要考虑PID的循环使用特性,避免基于PID的缓存无限增长。
-
监控工具的自监控:即使是系统监控工具本身,也需要完善的自我监控机制,确保其资源使用在合理范围内。
用户建议
对于使用Glances的用户,特别是通过容器部署的场景:
-
升级至4.2.1或更高版本以获取内存泄漏修复。
-
定期监控Glances自身的内存使用情况,可通过docker stats或类似工具实现。
-
对于无法立即升级的环境,可考虑设置定期重启策略作为临时解决方案。
-
在配置文件中合理设置history_size参数,平衡历史数据需求和内存使用。
通过这次问题的发现和解决,Glances项目在内存管理方面得到了显著改进,为用户提供了更稳定的系统监控体验。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









