Notion MCP Server 项目开发指南与贡献规范
2025-06-19 21:37:26作者:滕妙奇
项目概述
Notion MCP Server 是一个创新型开源项目,旨在通过 Model Context Protocol (MCP) 协议实现 Notion 与大型语言模型的无缝集成。该项目为开发者提供了一个强大的中间层,使得 AI 能力可以深度整合到 Notion 的工作流中。
开发环境配置
基础环境准备
- Node.js 环境:建议使用最新的 LTS 版本,确保与 TypeScript 的兼容性
- 依赖安装:项目使用 npm 作为包管理器,安装所有依赖只需执行
npm install - 环境变量配置:创建
.env文件并配置 Notion API 密钥
NOTION_API_KEY=your_notion_api_key_here
构建与运行
项目采用 TypeScript 编写,构建过程简单明了:
npm run build # 编译TypeScript代码
npm start # 启动开发服务器
代码贡献流程
问题报告规范
当发现项目中的问题时,提交详细的错误报告有助于快速定位和修复问题。一个完整的错误报告应包含:
- 问题描述:清晰说明问题的现象
- 重现步骤:详细的操作步骤,包括配置参数
- 预期与实际行为:明确对比期望结果与实际结果
- 环境信息:Node.js 版本、操作系统、项目版本等
功能增强建议
对于新功能建议,应当:
- 提供具体的使用场景描述
- 说明该功能解决的问题
- 建议可能的实现方式
- 包含示例代码或接口设计
代码提交规范
- 分支管理:每个功能或修复应创建独立分支
- 提交信息:采用语义化提交信息格式
- 代码审查:确保变更符合项目标准
代码风格指南
TypeScript 最佳实践
- 类型系统:充分利用 TypeScript 的类型推断和类型注解
- 接口设计:遵循 SOLID 原则,保持接口简洁
- 错误处理:使用 try-catch 块和自定义错误类
- 异步编程:优先使用 async/await 而非回调
工具开发规范
添加新工具时需要:
- 定义工具接口:在 TOOL_DEFINITIONS 中明确输入输出规范
- 实现处理逻辑:在 toolHandlers 中编写具体实现
- 错误处理:考虑各种边界情况和异常场景
- 文档更新:同步更新相关文档和示例
// 示例工具定义
{
name: "query_database",
description: "查询Notion数据库中的条目",
inputSchema: {
type: "object",
properties: {
database_id: { type: "string" },
filter: { type: "object" }
},
required: ["database_id"]
}
}
测试策略
单元测试
- 工具功能测试:验证每个工具的核心逻辑
- 错误场景测试:模拟各种异常输入和网络问题
- 性能测试:确保在高负载下的稳定性
集成测试
- Notion API 集成:验证与Notion的交互是否正常
- MCP协议兼容性:确保符合协议规范
- 端到端测试:模拟真实用户场景
文档标准
代码文档
- JSDoc注释:为所有公开API添加详细注释
- 类型定义:完善TypeScript类型声明
- 示例代码:提供常见使用场景的代码片段
项目文档
- README更新:及时反映新增功能
- 变更日志:记录每个版本的重大变更
- 架构说明:描述系统设计和高层架构
项目治理
所有贡献者都应遵守开源社区行为准则,保持专业和尊重的沟通方式。项目采用MIT许可证,确保贡献的代码可以被自由使用和修改。
通过遵循这些指南,开发者可以高效地为Notion MCP Server项目做出贡献,共同推动Notion与AI集成的创新发展。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0113
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
487
3.61 K
Ascend Extension for PyTorch
Python
298
332
暂无简介
Dart
738
177
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
270
113
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
865
467
仓颉编译器源码及 cjdb 调试工具。
C++
149
880
React Native鸿蒙化仓库
JavaScript
296
343
Dora SSR 是一款跨平台的游戏引擎,提供前沿或是具有探索性的游戏开发功能。它内置了Web IDE,提供了可以轻轻松松通过浏览器访问的快捷游戏开发环境,特别适合于在新兴市场如国产游戏掌机和其它移动电子设备上直接进行游戏开发和编程学习。
C++
52
7
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20