Harvester 1.4.2升级至1.5.0的常见问题分析与解决方案
升级失败现象分析
在将Harvester从1.4.2版本升级至1.5.0版本的过程中,用户遇到了升级流程中断的问题。系统虽然连接了互联网,但出现了类似ImagePullBackOff的错误症状。检查升级日志pod时发现没有相关pod被列出,即使应用了kubectl补丁操作,系统也未能恢复正常。
问题根源探究
通过对支持包的深入分析,发现系统中残留了多个先前升级尝试留下的日志资源,这些残留资源阻碍了新升级流程的正常启动和完成。具体表现为:
-
系统中存在两个陈旧的Logging CR资源:
- hvst-upgrade-5554f-upgradelog-infra(存在96天)
- hvst-upgrade-swx5p-upgradelog-operator-root(存在94天)
-
多个关联的pod仍在运行,包括:
- 多个fluentbit实例
- fluentd实例
- rancher-logging组件
这些残留资源占用了系统资源并可能造成资源冲突,导致新升级流程无法正常启动。
解决方案实施步骤
第一步:清理残留资源
-
删除陈旧的Logging CR资源:
kubectl delete logging hvst-upgrade-5554f-upgradelog-infra kubectl delete logging hvst-upgrade-swx5p-upgradelog-operator-root -
检查并清理相关pod:
kubectl get pods -A | grep hvst-upgrade确认只保留必要的pod(如rancher-logging组件),删除其他残留pod。
第二步:准备升级环境
-
确保系统网络连接正常,特别是到容器镜像仓库的连接。
-
根据Harvester 1.5.0文档要求,创建Version CR来启动升级流程。
-
在升级前禁用日志功能,减少潜在冲突。
第三步:执行升级操作
-
重新应用v1.5版本的manifest以启用升级按钮。
-
启动升级流程,密切监控升级状态。
-
如遇问题,可考虑使用升级重启功能。
预防措施建议
-
在每次升级前,检查系统中是否存在陈旧的升级资源。
-
定期清理不再需要的升级日志和资源。
-
对于生产环境,建议先在测试环境验证升级流程。
-
保持对Harvester文档的关注,及时了解已知问题和解决方案。
技术要点说明
-
Harvester升级机制依赖于Kubernetes的CRD(Custom Resource Definition)来管理升级流程。
-
升级过程中会创建临时性的日志收集组件(fluentbit/fluentd)来记录升级日志。
-
这些组件在正常情况下应在升级完成后自动清理,但在某些异常情况下可能残留。
-
残留资源不仅占用系统资源,还可能造成后续升级的命名冲突或资源争用。
通过以上步骤,大多数升级中断问题可以得到解决。如问题仍然存在,建议收集完整的支持包并联系技术支持团队进行深入分析。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00