Harvester项目升级故障分析与解决方案:从1.4.2到1.5.0的升级挑战
问题背景
在Harvester集群从1.4.2版本升级到1.5.0版本的过程中,用户遇到了节点升级卡顿的问题。具体表现为:系统升级成功后,3个节点中有2个成功升级,但第3个节点(harvester4)长时间停留在"images preloaded"状态,导致整个升级流程无法完成。
故障现象分析
通过深入分析支持包和系统日志,我们发现以下关键问题点:
-
节点状态不一致:虽然Kubernetes集群显示3个节点,但系统中存在多余的节点设备记录和机器对象,表明之前删除节点时未完全清理干净。
-
升级流程阻塞:升级控制器在harvester4节点上卡在"images preloaded"阶段,无法继续后续的节点升级流程。
-
节点元数据问题:
/etc/os-release文件显示节点仍运行在v1.4.2版本,而其他组件已升级到v1.5.0,表明节点操作系统升级未完成。
根本原因
经过技术团队深入排查,确定问题主要由以下因素导致:
-
残留的机器对象:系统中存在已删除节点(harvester2)的残留机器对象,干扰了升级流程的正常执行。
-
节点升级流程中断:升级过程中某些步骤(如drain操作)未能正确完成,导致升级流程无法继续。
-
证书过期问题:初期支持包生成失败与系统证书过期有关,虽然这不是升级失败的直接原因,但影响了故障诊断过程。
解决方案
针对上述问题,我们推荐以下解决步骤:
-
清理残留对象:
- 删除无效的机器对象(如custom-1d1de6c3ae63和custom-9626842a1f91)
- 移除不再使用的节点设备记录(如harvester2)
-
修复升级流程:
- 执行post-drain脚本完成被中断的drain操作
- 手动删除卡住的升级CR(hvst-upgrade-zjft7)
- 重新触发升级流程
-
节点修复:
- 对于无法自动升级的节点(harvester4),建议考虑重新加入集群
- 检查节点网络和存储配置,确保升级环境正常
技术细节与最佳实践
-
升级前检查:
- 使用
kubectl get machines -n fleet-local检查机器对象状态 - 验证
/etc/os-release文件内容与当前版本一致 - 确保所有节点证书有效
- 使用
-
升级过程监控:
- 关注升级CR的状态变化
- 检查节点drain操作的完成情况
- 监控系统组件的版本一致性
-
故障处理技巧:
- 使用drain-status.sh脚本诊断节点升级状态
- 分析支持包中的yaml目录获取集群配置详情
- 检查Provisioning Cluster资源的状态信息
经验总结
-
版本兼容性:跨版本升级(特别是从1.4.x到1.5.0)需要更加谨慎,建议先在测试环境验证。
-
资源清理:删除节点时务必确认所有相关资源(机器对象、节点设备记录等)已完全清理。
-
监控工具:掌握支持包分析工具的使用方法,能够快速定位升级问题。
-
流程理解:深入理解Harvester升级流程的各个阶段(镜像准备、节点drain、系统服务升级等),有助于快速诊断问题。
通过本次故障处理,我们不仅解决了具体的升级问题,也为Harvester集群的维护积累了宝贵经验。建议用户在升级前充分准备,升级过程中密切监控,遇到问题时及时收集完整信息以便快速诊断。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00