CellChat:单细胞数据的细胞间通信推断、分析与可视化工具
项目介绍
CellChat是一个基于R语言的工具包,专门用于从单细胞数据中推断、分析及可视化细胞间的通讯过程。该工具旨在为用户提供一个直观易解的框架,强调清晰、吸引人且可解释的视觉化效果。CellChatDB作为其关键组件,是手动编纂的、涵盖多物种文献支持的配体-受体相互作用数据库,详尽地概括了包括配体-受体复合物的多亚单位结构在内的分子互动机制。若您的研究中应用到CellChat,请考虑引用对应的学术论文。
快速启动
在开始之前,请确保您的系统已安装R语言环境和必要的依赖库。以下是安装CellChat的基本步骤:
首先,通过CRAN或GitHub添加CellChat的仓库:
# 通过CRAN(如果新版本已迁移,请参照最新说明)
install.packages("CellChat")
# 或者通过GitHub获取最新开发版(注意可能需要devtools)
if (!requireNamespace("remotes", quietly = TRUE))
install.packages("remotes")
remotes::install_github("sqjin/CellChat") # 注意应更新为当前活跃的仓库地址,这里示例旧地址
接下来,加载并尝试运行一个简单的例子:
library(CellChat)
data("ExampleData") # 假设这是内置的示例数据
cc_obj <- CellChat(data = ExampleData, gene_info = "PathToGeneInfoFile")
result <- cc_infer(cc_obj) # 推断细胞间通讯
cc_network(result) # 可视化网络
请注意,实际操作时需替换"PathToGeneInfoFile"为您基因信息文件的实际路径,并确保数据格式符合要求。
应用案例与最佳实践
在实际研究中,CellChat常被用来揭示疾病模型中特定细胞类型的通讯模式变化,比如癌症微环境中免疫细胞与癌细胞的交互。最佳实践建议首先对数据进行质量控制和预处理,随后利用CellChat进行细胞间通讯的推断,接着结合社交网络分析等方法深入理解通讯网络特性,最后通过可视化展示关键的信号输入输出和细胞群体动态。
典型生态项目
虽然CellChat本身作为一个独立的项目,但它的应用广泛涉及生物信息学和系统生物学领域。用户社区贡献了许多案例分析,特别是在单细胞数据分析的论坛和会议中。例如,研究者可能会将CellChat与其他单细胞数据分析工具如Seurat或Scanpy结合,来实现更复杂的分析流程。此外,CellChatDB作为其生态的一部分,为研究人员提供了丰富的配体-受体相互作用资源,进一步促进了跨研究的标准化和数据共享。
由于原始项目提示已迁移到新的GitHub仓库jinworks/CellChat,对于最新的功能和实践,建议直接访问新仓库以获取最新的文档和示例。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









