CellChat:单细胞数据的细胞间通信推断、分析与可视化工具
项目介绍
CellChat是一个基于R语言的工具包,专门用于从单细胞数据中推断、分析及可视化细胞间的通讯过程。该工具旨在为用户提供一个直观易解的框架,强调清晰、吸引人且可解释的视觉化效果。CellChatDB作为其关键组件,是手动编纂的、涵盖多物种文献支持的配体-受体相互作用数据库,详尽地概括了包括配体-受体复合物的多亚单位结构在内的分子互动机制。若您的研究中应用到CellChat,请考虑引用对应的学术论文。
快速启动
在开始之前,请确保您的系统已安装R语言环境和必要的依赖库。以下是安装CellChat的基本步骤:
首先,通过CRAN或GitHub添加CellChat的仓库:
# 通过CRAN(如果新版本已迁移,请参照最新说明)
install.packages("CellChat")
# 或者通过GitHub获取最新开发版(注意可能需要devtools)
if (!requireNamespace("remotes", quietly = TRUE))
install.packages("remotes")
remotes::install_github("sqjin/CellChat") # 注意应更新为当前活跃的仓库地址,这里示例旧地址
接下来,加载并尝试运行一个简单的例子:
library(CellChat)
data("ExampleData") # 假设这是内置的示例数据
cc_obj <- CellChat(data = ExampleData, gene_info = "PathToGeneInfoFile")
result <- cc_infer(cc_obj) # 推断细胞间通讯
cc_network(result) # 可视化网络
请注意,实际操作时需替换"PathToGeneInfoFile"为您基因信息文件的实际路径,并确保数据格式符合要求。
应用案例与最佳实践
在实际研究中,CellChat常被用来揭示疾病模型中特定细胞类型的通讯模式变化,比如癌症微环境中免疫细胞与癌细胞的交互。最佳实践建议首先对数据进行质量控制和预处理,随后利用CellChat进行细胞间通讯的推断,接着结合社交网络分析等方法深入理解通讯网络特性,最后通过可视化展示关键的信号输入输出和细胞群体动态。
典型生态项目
虽然CellChat本身作为一个独立的项目,但它的应用广泛涉及生物信息学和系统生物学领域。用户社区贡献了许多案例分析,特别是在单细胞数据分析的论坛和会议中。例如,研究者可能会将CellChat与其他单细胞数据分析工具如Seurat或Scanpy结合,来实现更复杂的分析流程。此外,CellChatDB作为其生态的一部分,为研究人员提供了丰富的配体-受体相互作用资源,进一步促进了跨研究的标准化和数据共享。
由于原始项目提示已迁移到新的GitHub仓库jinworks/CellChat,对于最新的功能和实践,建议直接访问新仓库以获取最新的文档和示例。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00