CellChat:单细胞数据的细胞间通信推断、分析与可视化工具
项目介绍
CellChat是一个基于R语言的工具包,专门用于从单细胞数据中推断、分析及可视化细胞间的通讯过程。该工具旨在为用户提供一个直观易解的框架,强调清晰、吸引人且可解释的视觉化效果。CellChatDB作为其关键组件,是手动编纂的、涵盖多物种文献支持的配体-受体相互作用数据库,详尽地概括了包括配体-受体复合物的多亚单位结构在内的分子互动机制。若您的研究中应用到CellChat,请考虑引用对应的学术论文。
快速启动
在开始之前,请确保您的系统已安装R语言环境和必要的依赖库。以下是安装CellChat的基本步骤:
首先,通过CRAN或GitHub添加CellChat的仓库:
# 通过CRAN(如果新版本已迁移,请参照最新说明)
install.packages("CellChat")
# 或者通过GitHub获取最新开发版(注意可能需要devtools)
if (!requireNamespace("remotes", quietly = TRUE))
install.packages("remotes")
remotes::install_github("sqjin/CellChat") # 注意应更新为当前活跃的仓库地址,这里示例旧地址
接下来,加载并尝试运行一个简单的例子:
library(CellChat)
data("ExampleData") # 假设这是内置的示例数据
cc_obj <- CellChat(data = ExampleData, gene_info = "PathToGeneInfoFile")
result <- cc_infer(cc_obj) # 推断细胞间通讯
cc_network(result) # 可视化网络
请注意,实际操作时需替换"PathToGeneInfoFile"为您基因信息文件的实际路径,并确保数据格式符合要求。
应用案例与最佳实践
在实际研究中,CellChat常被用来揭示疾病模型中特定细胞类型的通讯模式变化,比如癌症微环境中免疫细胞与癌细胞的交互。最佳实践建议首先对数据进行质量控制和预处理,随后利用CellChat进行细胞间通讯的推断,接着结合社交网络分析等方法深入理解通讯网络特性,最后通过可视化展示关键的信号输入输出和细胞群体动态。
典型生态项目
虽然CellChat本身作为一个独立的项目,但它的应用广泛涉及生物信息学和系统生物学领域。用户社区贡献了许多案例分析,特别是在单细胞数据分析的论坛和会议中。例如,研究者可能会将CellChat与其他单细胞数据分析工具如Seurat或Scanpy结合,来实现更复杂的分析流程。此外,CellChatDB作为其生态的一部分,为研究人员提供了丰富的配体-受体相互作用资源,进一步促进了跨研究的标准化和数据共享。
由于原始项目提示已迁移到新的GitHub仓库jinworks/CellChat,对于最新的功能和实践,建议直接访问新仓库以获取最新的文档和示例。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00