Tagger 开源项目使用教程
2024-09-18 20:01:19作者:邓越浪Henry
1. 项目介绍
Tagger 是一个开源的自然语言处理(NLP)项目,专注于文本标注和实体识别。该项目旨在帮助开发者快速构建和部署文本标注工具,适用于各种NLP任务,如命名实体识别(NER)、情感分析等。Tagger 提供了丰富的功能和灵活的接口,使得开发者可以根据自己的需求进行定制和扩展。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的开发环境已经安装了以下依赖:
- Python 3.7 或更高版本
- Git
2.2 安装步骤
-
克隆项目仓库:
git clone https://github.com/XMUNLP/Tagger.git cd Tagger -
安装依赖:
pip install -r requirements.txt
2.3 快速启动示例
以下是一个简单的示例,展示如何使用 Tagger 进行文本标注:
from tagger import Tagger
# 初始化 Tagger 实例
tagger = Tagger()
# 示例文本
text = "苹果公司是一家全球知名的科技公司,总部位于美国加利福尼亚州。"
# 进行文本标注
annotations = tagger.annotate(text)
# 输出标注结果
for annotation in annotations:
print(f"实体: {annotation['entity']}, 类型: {annotation['type']}, 位置: {annotation['start']}-{annotation['end']}")
3. 应用案例和最佳实践
3.1 命名实体识别(NER)
Tagger 可以用于识别文本中的命名实体,如人名、地名、组织名等。以下是一个简单的 NER 应用案例:
from tagger import Tagger
tagger = Tagger()
text = "乔布斯是苹果公司的创始人之一,他在加利福尼亚州创建了这家公司。"
annotations = tagger.annotate(text)
for annotation in annotations:
print(f"实体: {annotation['entity']}, 类型: {annotation['type']}, 位置: {annotation['start']}-{annotation['end']}")
3.2 情感分析
Tagger 还可以用于情感分析,帮助识别文本中的情感倾向。以下是一个简单的情感分析应用案例:
from tagger import Tagger
tagger = Tagger()
text = "这部电影真是太棒了,我非常喜欢!"
annotations = tagger.annotate(text, task="sentiment")
for annotation in annotations:
print(f"情感: {annotation['sentiment']}, 位置: {annotation['start']}-{annotation['end']}")
4. 典型生态项目
4.1 SpaCy
Tagger 可以与 SpaCy 结合使用,进一步提升文本处理能力。SpaCy 是一个强大的 NLP 库,支持多种语言和丰富的 NLP 功能。
4.2 Hugging Face Transformers
Hugging Face 的 Transformers 库提供了大量的预训练模型,可以与 Tagger 结合使用,进一步提升文本标注的准确性和效率。
4.3 Flask
Tagger 可以与 Flask 结合,构建一个简单的文本标注 Web 服务。以下是一个简单的 Flask 应用示例:
from flask import Flask, request, jsonify
from tagger import Tagger
app = Flask(__name__)
tagger = Tagger()
@app.route('/annotate', methods=['POST'])
def annotate():
text = request.json['text']
annotations = tagger.annotate(text)
return jsonify(annotations)
if __name__ == '__main__':
app.run(debug=True)
通过以上步骤,您可以快速上手并使用 Tagger 进行文本标注,结合其他生态项目,进一步提升您的 NLP 应用能力。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
226
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868