Tagger:基于自注意力机制的深度语义角色标注工具
2024-09-22 07:14:20作者:田桥桑Industrious
项目介绍
Tagger 是一个基于自注意力机制(Self-Attention)的深度语义角色标注(Semantic Role Labeling, SRL)工具,其源代码来源于论文《Deep Semantic Role Labeling with Self-Attention》。该项目通过重新实现原始的TensorFlow代码,使用PyTorch框架,提供了一个高效、灵活的SRL解决方案。Tagger不仅支持单模型训练,还提供了预训练模型和详细的训练、解码流程,帮助用户快速上手并应用于实际场景。
项目技术分析
技术栈
- 编程语言:Python 3
- 深度学习框架:PyTorch
- 其他依赖:TensorFlow-2.0(CPU版本)、GloVe嵌入和
srlconll脚本
核心技术
- 自注意力机制:通过自注意力机制,模型能够捕捉句子中不同词之间的依赖关系,从而更准确地进行语义角色标注。
- 深度前馈神经网络(DeepAtt-FFN):Tagger实现了基于深度前馈神经网络的模型,该模型在多个数据集上表现出色。
实现细节
- 数据处理:项目遵循CoNLL数据集的处理流程,并提供了
build_vocab.py脚本用于生成词汇表。 - 训练与验证:提供了详细的训练和验证脚本,用户可以根据需要调整超参数进行模型训练。
- 解码:提供了解码脚本,用户可以使用训练好的模型对新数据进行语义角色标注。
项目及技术应用场景
应用场景
- 自然语言处理研究:适用于学术研究,帮助研究人员快速实现和验证新的SRL算法。
- 文本分析:在文本分析、信息提取等领域,SRL可以帮助识别句子中的主语、谓语、宾语等语义角色,提升文本处理的准确性。
- 智能问答系统:在智能问答系统中,SRL可以帮助系统更好地理解用户的问题,从而提供更准确的答案。
技术优势
- 高效性:基于PyTorch的实现,提供了高效的训练和推理能力。
- 灵活性:用户可以根据需要调整模型参数,进行定制化训练。
- 可扩展性:项目结构清晰,易于扩展和集成到其他系统中。
项目特点
特点一:基于自注意力机制
Tagger采用了自注意力机制,能够更好地捕捉句子中的长距离依赖关系,从而提升语义角色标注的准确性。
特点二:PyTorch实现
项目使用PyTorch重新实现了原始的TensorFlow代码,提供了更现代、更高效的深度学习框架支持。
特点三:详细的文档和脚本
项目提供了详细的文档和脚本,包括数据处理、模型训练、验证和解码等步骤,帮助用户快速上手并进行定制化开发。
特点四:预训练模型
项目提供了预训练模型,用户可以直接使用这些模型进行推理,节省了从头开始训练模型的时间和资源。
结语
Tagger作为一个基于自注意力机制的深度语义角色标注工具,不仅在学术研究中具有重要价值,也在实际应用中展现了强大的潜力。无论你是研究人员还是开发者,Tagger都将成为你进行语义角色标注的得力助手。快来尝试吧!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218