TwinLiteNet 开源项目安装与使用教程
2024-09-17 18:42:08作者:劳婵绚Shirley
1. 项目目录结构及介绍
TwinLiteNet 项目的目录结构如下:
TwinLiteNet/
├── images/
│ ├── train/
│ ├── val/
│ └── test/
├── segments/
│ ├── train/
│ └── val/
├── lane/
│ ├── train/
│ └── val/
├── DataSet.py
├── IOUEval.py
├── LICENSE
├── README.md
├── const.py
├── export.py
├── loss.py
├── requirements.txt
├── test_image.py
├── test_trt.py
├── train.py
├── twin.png
├── utils.py
└── val.py
目录结构介绍
- images/: 存放训练、验证和测试的图像数据。
- segments/: 存放可行驶区域分割的标注数据。
- lane/: 存放车道线分割的标注数据。
- DataSet.py: 数据集处理脚本。
- IOUEval.py: 用于计算 IoU(Intersection over Union)的脚本。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍和使用说明。
- const.py: 常量定义文件。
- export.py: 模型导出脚本。
- loss.py: 损失函数定义脚本。
- requirements.txt: 项目依赖的 Python 包列表。
- test_image.py: 用于测试图像推理的脚本。
- test_trt.py: 用于测试 TensorRT 推理的脚本。
- train.py: 训练模型的主脚本。
- twin.png: 项目架构图。
- utils.py: 工具函数脚本。
- val.py: 验证模型的脚本。
2. 项目的启动文件介绍
train.py
train.py 是项目的启动文件,用于训练 TwinLiteNet 模型。该脚本的主要功能包括:
- 加载数据集
- 定义模型架构
- 设置训练参数
- 执行训练过程
使用方法:
python3 train.py
val.py
val.py 用于验证训练好的模型在验证集上的性能。该脚本的主要功能包括:
- 加载验证数据集
- 加载训练好的模型
- 计算验证集上的 IoU 和其他评估指标
使用方法:
python3 val.py
test_image.py
test_image.py 用于对单张图像进行推理测试。该脚本的主要功能包括:
- 加载测试图像
- 加载训练好的模型
- 输出推理结果
使用方法:
python3 test_image.py
3. 项目的配置文件介绍
requirements.txt
requirements.txt 文件列出了项目运行所需的 Python 包及其版本。使用以下命令安装依赖:
pip install -r requirements.txt
const.py
const.py 文件定义了项目中使用的常量,如数据集路径、模型参数等。开发者可以根据需要修改这些常量来适应不同的环境或需求。
LICENSE
LICENSE 文件包含了项目的开源许可证信息,通常为 MIT 许可证。开发者在使用和修改项目时需要遵守该许可证的规定。
README.md
README.md 文件是项目的介绍文档,包含了项目的概述、安装步骤、使用说明等内容。开发者可以通过阅读该文件快速了解项目的基本信息。
通过以上内容,您可以快速了解 TwinLiteNet 项目的目录结构、启动文件和配置文件,并开始使用该项目进行可行驶区域和车道线分割任务的开发和研究。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443