TwinLiteNet 开源项目安装与使用教程
2024-09-17 05:19:16作者:劳婵绚Shirley
1. 项目目录结构及介绍
TwinLiteNet 项目的目录结构如下:
TwinLiteNet/
├── images/
│ ├── train/
│ ├── val/
│ └── test/
├── segments/
│ ├── train/
│ └── val/
├── lane/
│ ├── train/
│ └── val/
├── DataSet.py
├── IOUEval.py
├── LICENSE
├── README.md
├── const.py
├── export.py
├── loss.py
├── requirements.txt
├── test_image.py
├── test_trt.py
├── train.py
├── twin.png
├── utils.py
└── val.py
目录结构介绍
- images/: 存放训练、验证和测试的图像数据。
- segments/: 存放可行驶区域分割的标注数据。
- lane/: 存放车道线分割的标注数据。
- DataSet.py: 数据集处理脚本。
- IOUEval.py: 用于计算 IoU(Intersection over Union)的脚本。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍和使用说明。
- const.py: 常量定义文件。
- export.py: 模型导出脚本。
- loss.py: 损失函数定义脚本。
- requirements.txt: 项目依赖的 Python 包列表。
- test_image.py: 用于测试图像推理的脚本。
- test_trt.py: 用于测试 TensorRT 推理的脚本。
- train.py: 训练模型的主脚本。
- twin.png: 项目架构图。
- utils.py: 工具函数脚本。
- val.py: 验证模型的脚本。
2. 项目的启动文件介绍
train.py
train.py
是项目的启动文件,用于训练 TwinLiteNet 模型。该脚本的主要功能包括:
- 加载数据集
- 定义模型架构
- 设置训练参数
- 执行训练过程
使用方法:
python3 train.py
val.py
val.py
用于验证训练好的模型在验证集上的性能。该脚本的主要功能包括:
- 加载验证数据集
- 加载训练好的模型
- 计算验证集上的 IoU 和其他评估指标
使用方法:
python3 val.py
test_image.py
test_image.py
用于对单张图像进行推理测试。该脚本的主要功能包括:
- 加载测试图像
- 加载训练好的模型
- 输出推理结果
使用方法:
python3 test_image.py
3. 项目的配置文件介绍
requirements.txt
requirements.txt
文件列出了项目运行所需的 Python 包及其版本。使用以下命令安装依赖:
pip install -r requirements.txt
const.py
const.py
文件定义了项目中使用的常量,如数据集路径、模型参数等。开发者可以根据需要修改这些常量来适应不同的环境或需求。
LICENSE
LICENSE
文件包含了项目的开源许可证信息,通常为 MIT 许可证。开发者在使用和修改项目时需要遵守该许可证的规定。
README.md
README.md
文件是项目的介绍文档,包含了项目的概述、安装步骤、使用说明等内容。开发者可以通过阅读该文件快速了解项目的基本信息。
通过以上内容,您可以快速了解 TwinLiteNet 项目的目录结构、启动文件和配置文件,并开始使用该项目进行可行驶区域和车道线分割任务的开发和研究。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0289Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp挑战编辑器URL重定向问题解析2 freeCodeCamp正则表达式课程中反向引用示例代码修正分析3 freeCodeCamp课程中英语学习模块的提示信息优化建议4 freeCodeCamp课程中客户投诉表单的事件触发机制解析5 freeCodeCamp课程中meta元素的教学优化建议6 freeCodeCamp课程中CSS可访问性问题的技术解析7 freeCodeCamp课程中排版基础概念的优化探讨8 freeCodeCamp正则表达式教学视频中的语法修正9 freeCodeCamp猫照片应用HTML教程中的元素嵌套优化建议10 freeCodeCamp JavaScript 问答机器人项目中的变量声明与赋值规范探讨
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
164
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
952
560

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.01 K
396

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
407
387

React Native鸿蒙化仓库
C++
199
279

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0