LangGraph.js 开源项目使用指南
2024-09-19 06:50:03作者:胡易黎Nicole
1. 项目介绍
LangGraph.js 是一个用于构建具有状态的多角色应用程序的库,特别适用于创建代理和多代理工作流。它通过将语言代理构建为图结构,提供了以下核心优势:
- 循环和分支:支持在应用程序中实现循环和条件分支。
- 持久性:自动保存图中的每个步骤的状态,支持错误恢复、人机交互、时间旅行等功能。
- 人机交互:中断图的执行以批准或编辑代理计划的下一个动作。
- 流式支持:支持流式输出,节点产生的结果可以实时流式传输。
- 与 LangChain 集成:无缝集成 LangChain.js 和 LangSmith,但并不强制依赖它们。
2. 项目快速启动
环境准备
- Node.js 版本 18 或更新版本。
- 一个 Tavily 账户和 API 密钥。
- 一个 OpenAI 开发者平台账户和 API 密钥。
安装依赖
mkdir langgraph-agent
cd langgraph-agent
npm install @langchain/langgraph @langchain/openai @langchain/community
创建第一个代理
创建一个名为 agent.ts
的文件,并添加以下 TypeScript 代码:
// agent.ts
// 重要:在此处添加你的 API 密钥,注意不要公开发布它们
process.env.OPENAI_API_KEY = "sk-...";
process.env.TAVILY_API_KEY = "tvly-...";
import { TavilySearchResults } from "@langchain/community/tools/tavily_search";
import { ChatOpenAI } from "@langchain/openai";
import { MemorySaver } from "@langchain/langgraph";
import { HumanMessage } from "@langchain/core/messages";
import { createReactAgent } from "@langchain/langgraph/prebuilt";
// 定义代理使用的工具
const agentTools = [new TavilySearchResults({ maxResults: 3 })];
const agentModel = new ChatOpenAI({ temperature: 0 });
// 初始化内存以在图运行之间持久化状态
const agentCheckpointer = new MemorySaver();
const agent = createReactAgent({
llm: agentModel,
tools: agentTools,
checkpointSaver: agentCheckpointer,
});
// 现在开始使用
const agentFinalState = await agent.invoke([
messages: [new HumanMessage("what is the current weather in sf")]
], { configurable: { thread_id: "42" } });
console.log(agentFinalState.messages[agentFinalState.messages.length - 1].content);
const agentNextState = await agent.invoke([
messages: [new HumanMessage("what about ny")]
], { configurable: { thread_id: "42" } });
console.log(agentNextState.messages[agentNextState.messages.length - 1].content);
保存文件后,运行以下命令启动代理:
npx tsx agent.ts
3. 应用案例和最佳实践
客户支持聊天机器人
LangGraph.js 可以用于构建客户支持聊天机器人,通过集成多种工具和模型,提供实时的客户支持服务。例如,代理可以使用 Tavily 搜索 API 获取最新的信息,并使用 OpenAI 的模型生成回复。
信息检索增强生成(RAG)
LangGraph.js 支持构建信息检索增强生成(RAG)系统,通过结合外部数据源和语言模型,提供更准确和实时的信息生成服务。
多代理协作
LangGraph.js 支持多代理协作,可以用于构建复杂的任务处理系统,例如,一个代理负责规划任务,另一个代理负责执行任务。
4. 典型生态项目
LangChain.js
LangChain.js 是一个用于构建语言模型的库,LangGraph.js 与其无缝集成,提供了更强大的语言代理构建能力。
LangSmith
LangSmith 是一个用于监控和调试语言模型的工具,LangGraph.js 通过集成 LangSmith,提供了更好的调试和监控能力。
Tavily Search API
Tavily Search API 是一个强大的搜索工具,LangGraph.js 通过集成 Tavily Search API,提供了更丰富的信息检索能力。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
229
2.3 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
76

React Native鸿蒙化仓库
JavaScript
216
291

暂无简介
Dart
531
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
990
587

Ascend Extension for PyTorch
Python
73
102

仓颉编程语言测试用例。
Cangjie
34
59

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401