PixelStreamingInfrastructure 项目教程
1. 项目介绍
PixelStreamingInfrastructure 是 Epic Games 提供的一个开源项目,旨在为 Unreal Engine 的像素流(Pixel Streaming)功能提供基础设施支持。该项目包含了所有运行像素流应用程序所需的组件,包括信号服务器、SFU(选择性转发单元)、前端库等。通过这些组件,开发者可以轻松地将 Unreal Engine 项目部署到浏览器中,实现高质量的实时流媒体传输。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下工具和环境:
- Node.js
- Unreal Engine 4.24 或更高版本
- Git
2.2 克隆项目
首先,克隆 PixelStreamingInfrastructure 项目到本地:
git clone https://github.com/EpicGames/PixelStreamingInfrastructure.git
cd PixelStreamingInfrastructure
2.3 启动信号服务器
在项目根目录下,运行以下命令启动信号服务器:
# 对于 Windows 系统
.\SignallingWebServer\platform_scripts\cmd\start.bat
# 对于 Linux 或 Mac 系统
./SignallingWebServer/platform_scripts/bash/start.sh
2.4 启动前端
在项目根目录下,运行以下命令启动前端:
cd Frontend
npm install
npm start
2.5 运行 Unreal Engine 项目
打开你的 Unreal Engine 项目,启用 Pixel Streaming 插件,并配置信号服务器的地址。然后启动项目,你将能够在浏览器中看到实时流媒体。
3. 应用案例和最佳实践
3.1 远程协作
PixelStreamingInfrastructure 可以用于远程协作场景,例如设计师和工程师可以在不同的地点通过浏览器实时查看和操作 Unreal Engine 项目,提高协作效率。
3.2 虚拟展厅
在虚拟展厅中,PixelStreamingInfrastructure 可以用于展示高保真的 3D 模型和场景,用户可以通过浏览器远程访问,无需安装任何客户端软件。
3.3 教育培训
在教育培训领域,PixelStreamingInfrastructure 可以用于远程教学,教师可以通过 Unreal Engine 创建互动课程,学生通过浏览器参与学习。
4. 典型生态项目
4.1 Unreal Engine
PixelStreamingInfrastructure 是 Unreal Engine 生态系统的一部分,与 Unreal Engine 紧密集成,提供了强大的实时流媒体功能。
4.2 WebRTC
PixelStreamingInfrastructure 使用了 WebRTC 技术,确保了低延迟和高性能的实时流媒体传输。
4.3 Node.js
项目的前端部分使用了 Node.js 和 npm 进行开发和部署,提供了灵活的开发环境和丰富的生态系统。
通过以上步骤,你可以快速启动并使用 PixelStreamingInfrastructure 项目,实现高质量的实时流媒体传输。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









