PixelStreamingInfrastructure 项目教程
1. 项目介绍
PixelStreamingInfrastructure 是 Epic Games 提供的一个开源项目,旨在为 Unreal Engine 的像素流(Pixel Streaming)功能提供基础设施支持。该项目包含了所有运行像素流应用程序所需的组件,包括信号服务器、SFU(选择性转发单元)、前端库等。通过这些组件,开发者可以轻松地将 Unreal Engine 项目部署到浏览器中,实现高质量的实时流媒体传输。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下工具和环境:
- Node.js
- Unreal Engine 4.24 或更高版本
- Git
2.2 克隆项目
首先,克隆 PixelStreamingInfrastructure 项目到本地:
git clone https://github.com/EpicGames/PixelStreamingInfrastructure.git
cd PixelStreamingInfrastructure
2.3 启动信号服务器
在项目根目录下,运行以下命令启动信号服务器:
# 对于 Windows 系统
.\SignallingWebServer\platform_scripts\cmd\start.bat
# 对于 Linux 或 Mac 系统
./SignallingWebServer/platform_scripts/bash/start.sh
2.4 启动前端
在项目根目录下,运行以下命令启动前端:
cd Frontend
npm install
npm start
2.5 运行 Unreal Engine 项目
打开你的 Unreal Engine 项目,启用 Pixel Streaming 插件,并配置信号服务器的地址。然后启动项目,你将能够在浏览器中看到实时流媒体。
3. 应用案例和最佳实践
3.1 远程协作
PixelStreamingInfrastructure 可以用于远程协作场景,例如设计师和工程师可以在不同的地点通过浏览器实时查看和操作 Unreal Engine 项目,提高协作效率。
3.2 虚拟展厅
在虚拟展厅中,PixelStreamingInfrastructure 可以用于展示高保真的 3D 模型和场景,用户可以通过浏览器远程访问,无需安装任何客户端软件。
3.3 教育培训
在教育培训领域,PixelStreamingInfrastructure 可以用于远程教学,教师可以通过 Unreal Engine 创建互动课程,学生通过浏览器参与学习。
4. 典型生态项目
4.1 Unreal Engine
PixelStreamingInfrastructure 是 Unreal Engine 生态系统的一部分,与 Unreal Engine 紧密集成,提供了强大的实时流媒体功能。
4.2 WebRTC
PixelStreamingInfrastructure 使用了 WebRTC 技术,确保了低延迟和高性能的实时流媒体传输。
4.3 Node.js
项目的前端部分使用了 Node.js 和 npm 进行开发和部署,提供了灵活的开发环境和丰富的生态系统。
通过以上步骤,你可以快速启动并使用 PixelStreamingInfrastructure 项目,实现高质量的实时流媒体传输。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00