探索精准线段检测的新纪元——学习吸引力场表示法(AFM)
2024-05-22 22:46:47作者:钟日瑜
项目介绍 在计算机视觉领域,线段检测是一项基础但至关重要的任务,它广泛应用于场景理解、地图绘制以及自动驾驶等。Learning Attraction Field Representation for Robust Line Segment Detection(简称AFM)是一个全新的深度学习解决方案,源自于2019年CVPR会议的官方论文实现。AFM通过重新定义线段检测问题为一个耦合区域着色问题,巧妙地利用了卷积神经网络来解决这一挑战。
项目技术分析 AFM摒弃了传统的线段检测方法,转而采用吸引力场表示法。这种方法将图像中的线段视为区域内颜色的引导,从而实现了对复杂环境下的线性结构的高度精确识别。如图所示,AFM利用CNN生成吸引力场,进而进行线段检测,达到高精度和高效率的平衡。

项目及技术应用场景 AFM技术可以广泛应用于多种场景,例如:
- 场景解析:在室内或室外环境中,线段信息对于理解空间布局至关重要。
- 地图绘制:自动化的线段检测有助于更准确、快速地构建电子地图。
- 自动驾驶:帮助车辆识别路标、车道线和其他关键导航元素。
项目特点
- 高精度:与现有方法相比,AFM在Wireframe和YorkUrban数据集上的F-measure得分均显著提高,显示了其强大的线段检测能力。
- 高效能:AFM在保证精度的同时,速度远超同类算法,为实时应用提供了可能。
- 灵活性:支持两种不同的网络架构——U-Net和a-trous Residual U-Net,以适应不同的计算资源需求。
- 易于使用:提供详细的数据准备、训练和测试脚本,用户可以轻松上手并调整参数以优化性能。
引用 如果你在研究中受益于AFM,请引用以下文献:
@inproceedings{AFM,
title = "Learning Attraction Field Representation for Robust Line Segment Detection",
author = "Nan Xue and Song Bai and Fudong Wang and Gui-Song Xia and Tianfu Wu and Liangpei Zhang",
booktitle = "IEEE Conference on Computer Vision and Pattern Recognition (CVPR)",
year = {2019},
}
AFM项目不仅提供了前沿的算法,还具备清晰的文档和可复现的结果,是研究人员和开发者不容错过的一款强大工具。现在就加入我们,一起探索线段检测的未来吧!
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp课程页面空白问题的技术分析与解决方案3 freeCodeCamp课程视频测验中的Tab键导航问题解析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析7 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 8 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析9 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析10 freeCodeCamp Cafe Menu项目中link元素的void特性解析
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 CVE-2024-38077伪代码修复版EXP资源详解:Windows远程桌面授权服务问题利用指南 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
239
2.36 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
216
291
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
仓颉编程语言运行时与标准库。
Cangjie
122
97
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
998
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
589
115
Ascend Extension for PyTorch
Python
77
110
仓颉编程语言提供了 stdx 模块,该模块提供了网络、安全等领域的通用能力。
Cangjie
80
55