Panel 开源项目教程
2024-09-13 15:05:29作者:裘晴惠Vivianne
1. 项目介绍
Panel 是一个开源的 Python 库,旨在帮助用户创建交互式的数据可视化应用。它基于 HoloViz 生态系统,提供了丰富的组件和工具,使得开发者能够轻松地将数据分析结果转化为可交互的 Web 应用。Panel 支持多种数据可视化库,如 Matplotlib、Bokeh、Plotly 等,并且可以与 Jupyter Notebook 无缝集成。
2. 项目快速启动
安装 Panel
首先,确保你已经安装了 Python 3.7 或更高版本。然后,使用 pip 安装 Panel:
pip install panel
创建第一个 Panel 应用
以下是一个简单的示例,展示如何使用 Panel 创建一个交互式数据可视化应用:
import panel as pn
import pandas as pd
import hvplot.pandas
# 创建一个简单的数据集
data = pd.DataFrame({
'x': [1, 2, 3, 4, 5],
'y': [10, 11, 12, 13, 14]
})
# 创建一个 Plot
plot = data.hvplot.line(x='x', y='y')
# 创建一个 Panel 应用
app = pn.Column(
pn.pane.Markdown("# 我的第一个 Panel 应用"),
plot
)
# 显示应用
app.show()
运行上述代码后,你将看到一个包含标题和折线图的交互式 Web 应用。
3. 应用案例和最佳实践
案例1:实时数据监控
Panel 可以用于创建实时数据监控应用。以下是一个简单的示例,展示如何使用 Panel 和 Bokeh 创建一个实时更新的图表:
import panel as pn
import numpy as np
import holoviews as hv
from bokeh.models import ColumnDataSource
from bokeh.plotting import figure
from bokeh.io import curdoc
# 创建一个 Bokeh 图表
source = ColumnDataSource(data=dict(x=[], y=[]))
p = figure(width=400, height=400)
p.line(x='x', y='y', source=source)
# 更新数据
def update():
new_data = dict(x=[source.data['x'][-1] + 1], y=[np.random.randn()])
source.stream(new_data, rollover=20)
# 创建 Panel 应用
app = pn.Column(
pn.pane.Markdown("# 实时数据监控"),
hv.DynamicMap(hv.Curve, streams=[source])
)
# 每秒更新一次
pn.state.add_periodic_callback(update, period=1000)
# 显示应用
app.show()
最佳实践
- 模块化设计:将应用的不同部分拆分为独立的函数或类,以便于维护和扩展。
- 使用布局组件:Panel 提供了多种布局组件(如
Row
、Column
、Tabs
等),合理使用这些组件可以提高应用的可读性和用户体验。 - 响应式设计:利用 Panel 的响应式布局功能,确保应用在不同设备上都能良好显示。
4. 典型生态项目
Panel 是 HoloViz 生态系统的一部分,与其他项目紧密集成,提供了丰富的功能和工具。以下是一些典型的生态项目:
- HoloViews:一个用于简化数据可视化的库,与 Panel 无缝集成。
- Bokeh:一个强大的交互式可视化库,Panel 支持 Bokeh 图表的直接嵌入。
- Plotly:另一个流行的数据可视化库,Panel 也支持 Plotly 图表的嵌入。
- Datashader:用于处理大规模数据集的可视化工具,与 Panel 结合可以创建高性能的数据可视化应用。
通过这些生态项目的结合,Panel 可以满足各种复杂的数据可视化需求。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
226
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
988
586

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.43 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
288