在Terraform AWS EKS模块中使用自定义AMI的注意事项
2025-06-12 18:19:57作者:齐添朝
前言
在使用Terraform AWS EKS模块部署Kubernetes集群时,很多开发者会遇到需要自定义节点AMI的需求。本文将深入探讨在使用terraform-aws-modules/terraform-aws-eks模块时,如何正确配置自定义AMI以及相关的注意事项。
为什么需要自定义AMI
虽然AWS提供了官方优化的EKS AMI(Amazon Linux 2),但在某些场景下开发者可能需要使用其他发行版,例如Ubuntu。常见原因包括:
- 团队对特定Linux发行版有更丰富的运维经验
- 某些工作负载在特定发行版上表现更好
- 需要预装特定软件或配置
- 合规性要求
常见配置误区
很多开发者会简单地认为只需要在EKS模块配置中将ami_type改为"CUSTOM"并指定AMI ID即可:
eks_managed_node_group_defaults = {
ami_type = "CUSTOM"
}
eks_managed_node_groups = {
example = {
ami_id = "ami-xxxxxxxx"
# 其他配置...
}
}
这种配置虽然能让EC2实例成功启动,但节点往往无法加入Kubernetes集群。这是因为缺少了关键的引导脚本。
正确的自定义AMI配置方法
要让自定义AMI的节点成功加入EKS集群,必须提供正确的引导脚本。这可以通过以下两种方式实现:
方法一:启用自动生成引导数据
eks_managed_node_groups = {
example = {
ami_type = "CUSTOM"
ami_id = "ami-xxxxxxxx"
enable_bootstrap_user_data = true
# 其他配置...
}
}
这种方式适用于与EKS兼容性较好的AMI,如Canonical提供的官方EKS优化版Ubuntu AMI。
方法二:提供自定义脚本
对于需要特殊配置的AMI,可以手动提供脚本:
eks_managed_node_groups = {
example = {
ami_type = "CUSTOM"
ami_id = "ami-xxxxxxxx"
bootstrap_extra_args = "--container-runtime containerd"
pre_bootstrap_user_data = <<-EOT
# 自定义前置脚本
echo "Running custom setup"
EOT
post_bootstrap_user_data = <<-EOT
# 自定义后置脚本
echo "Node setup complete"
EOT
# 其他配置...
}
}
针对ML工作负载的特殊考虑
如果集群用于机器学习工作负载,AWS提供了专门的优化AMI:
AL2023_x86_64_NVIDIA- 包含NVIDIA驱动和容器工具包BOTTLEROCKET_x86_64_NVIDIA- 包含NVIDIA设备插件AL2023_x86_64_NEURON- 针对Inferentia/Trainium实例优化
这些官方优化AMI通常比自定义AMI更可靠,且能得到AWS技术支持。
最佳实践建议
- 优先使用AWS官方EKS优化AMI,除非有充分理由需要自定义
- 如果必须使用自定义AMI,确保它针对EKS进行了适当优化
- 仔细测试脚本,确保节点能正确加入集群
- 考虑使用Launch Template提供更灵活的节点配置
- 为生产环境建立AMI构建和验证流程
总结
在terraform-aws-modules/terraform-aws-eks模块中使用自定义AMI需要特别注意引导脚本的配置。简单的AMI ID指定不足以让节点加入集群。开发者应该根据具体需求选择最适合的配置方式,并在非生产环境中充分测试。对于大多数用例,AWS官方提供的优化AMI通常是更简单可靠的选择。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.87 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
310
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1