Genann 开源项目教程
2024-08-22 06:08:44作者:谭伦延
项目介绍
Genann 是一个轻量级的 C 语言神经网络库,适用于嵌入式系统和需要简单神经网络功能的应用。它提供了基本的神经网络功能,包括前向传播和反向传播,但不包含高级功能如卷积神经网络或循环神经网络。Genann 的设计目标是简单、高效和易于集成到其他项目中。
项目快速启动
环境准备
确保你的系统上已经安装了 C 语言编译器,如 GCC。
下载和编译
- 克隆项目仓库:
git clone https://github.com/codeplea/genann.git
- 进入项目目录:
cd genann
- 编译项目:
gcc -o genann_example example.c genann.c
- 运行示例程序:
./genann_example
示例代码
以下是一个简单的示例代码,展示了如何使用 Genann 创建一个神经网络并进行训练:
#include "genann.h"
#include <stdio.h>
int main(int argc, char *argv[]) {
/* Inputs: 2, Hidden layers: 1, Hidden neurons: 3, Outputs: 1 */
genann *ann = genann_init(2, 1, 3, 1);
/* Train the network */
for (int i = 0; i < 100; ++i) {
genann_train(ann, (double[]){0, 0}, (double[]){0}, 3);
genann_train(ann, (double[]){0, 1}, (double[]){1}, 3);
genann_train(ann, (double[]){1, 0}, (double[]){1}, 3);
genann_train(ann, (double[]){1, 1}, (double[]){0}, 3);
}
/* Run the network and print the result */
printf("Output for [0, 0]: %f\n", *genann_run(ann, (double[]){0, 0}));
printf("Output for [0, 1]: %f\n", *genann_run(ann, (double[]){0, 1}));
printf("Output for [1, 0]: %f\n", *genann_run(ann, (double[]){1, 0}));
printf("Output for [1, 1]: %f\n", *genann_run(ann, (double[]){1, 1}));
genann_free(ann);
return 0;
}
应用案例和最佳实践
应用案例
Genann 可以用于各种简单的机器学习任务,如:
- 逻辑门实现:如上例所示,Genann 可以用来实现基本的逻辑门(AND、OR、XOR 等)。
- 简单分类问题:Genann 可以用于简单的二分类或多分类问题。
- 函数逼近:Genann 可以用来逼近任意连续函数。
最佳实践
- 选择合适的网络结构:根据具体问题选择合适的输入层、隐藏层和输出层的大小。
- 合理的训练次数:过多的训练次数可能导致过拟合,而过少的训练次数可能导致欠拟合。
- 数据预处理:对输入数据进行归一化或标准化处理,可以提高训练效果。
典型生态项目
Genann 作为一个轻量级的神经网络库,通常与其他轻量级的 C 语言库或工具链结合使用,例如:
- 嵌入式系统开发:Genann 可以与嵌入式系统的开发框架(如 Arduino、Raspberry Pi 等)结合使用。
- 数据处理库:Genann 可以与数据处理库(如 NumPy 的 C 语言接口)结合使用,进行数据预处理和后处理。
- 图形库:Genann 可以与图形库(如 SDL、OpenGL 等)结合使用,进行可视化展示。
通过这些结合使用,可以构建出功能丰富的应用,如嵌入式系统中的智能控制、数据分析和可视化等。
登录后查看全文
热门项目推荐
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- KKimi-K2-InstructKimi-K2-Instruct是月之暗面推出的尖端混合专家语言模型,拥有1万亿总参数和320亿激活参数,专为智能代理任务优化。基于创新的MuonClip优化器训练,模型在知识推理、代码生成和工具调用场景表现卓越,支持128K长上下文处理。作为即用型指令模型,它提供开箱即用的对话能力与自动化工具调用功能,无需复杂配置即可集成到现有系统。模型采用MLA注意力机制和SwiGLU激活函数,在vLLM等主流推理引擎上高效运行,特别适合需要快速响应的智能助手应用。开发者可通过兼容OpenAI/Anthropic的API轻松调用,或基于开源权重进行深度定制。【此简介由AI生成】Python00
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TypeScript043GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。04note-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。TSX01PDFMathTranslate
PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython08
热门内容推荐
1 freeCodeCamp英语课程填空题提示缺失问题分析2 freeCodeCamp Cafe Menu项目中link元素的void特性解析3 freeCodeCamp课程中屏幕放大器知识点优化分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp音乐播放器项目中的函数调用问题解析7 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp论坛排行榜项目中的错误日志规范要求
最新内容推荐
左手Annotators,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手controlnet-openpose-sdxl-1.0,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手ERNIE-4.5-VL-424B-A47B-Paddle,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手m3e-base,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手SDXL-Lightning,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手wav2vec2-base-960h,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手nsfw_image_detection,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手XTTS-v2,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手whisper-large-v3,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手flux-ip-adapter,右手GPT-4:企业AI战略的“开源”与“闭源”之辩
项目优选
收起

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
97
155

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
112
253

React Native鸿蒙化仓库
C++
138
222

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
658
441

轻量级、语义化、对开发者友好的 golang 时间处理库
Go
8
2

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
301
1.03 K

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
17
33

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
514
43

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
702
97