在OMPL中实现自定义Python规划器的方法
2025-07-09 09:24:05作者:吴年前Myrtle
概述
OMPL(Open Motion Planning Library)是一个开源的基于采样的运动规划库,广泛应用于机器人路径规划领域。虽然OMPL主要使用C++实现,但它也提供了Python绑定,允许开发者使用Python进行算法开发和测试。
Python中实现自定义规划器的基本步骤
在Python中实现自定义规划器与C++版本类似,但有一些Python特有的注意事项:
- 继承基类:自定义规划器需要继承自
ompl.base.Planner
类 - 实现核心方法:必须重写
solve()
方法,这是规划器的核心功能 - 可选方法重写:根据需要可以重写
clear()
,setup()
等方法
实现示例
以下是一个简单的随机行走规划器(RandomWalkPlanner)的实现示例:
class RandomWalkPlanner(ompl.base.Planner):
def __init__(self, si):
super(RandomWalkPlanner, self).__init__(si, "RandomWalk")
# 初始化规划器参数
self.maxDistance_ = 0.0 # 最大步长
self.setup_ = False
def setup(self):
# 规划器设置方法
if not self.setup_:
self.setup_ = True
# 获取状态空间信息
stateSpace = self.si_.getStateSpace()
# 设置最大步长为状态空间直径的1/10
self.maxDistance_ = stateSpace.getMaximumExtent() * 0.1
def clear(self):
# 清理方法
super(RandomWalkPlanner, self).clear()
self.setup_ = False
def solve(self, ptc):
# 核心规划方法
self.setup()
# 获取问题定义
pdef = self.getProblemDefinition()
# 获取开始状态和目标状态
start = pdef.getStartState(0)
goal = pdef.getGoal()
# 创建路径对象
path = ompl.geometric.PathGeometric(self.si_)
path.append(start)
# 当前状态
current = self.si_.allocState()
self.si_.copyState(current, start)
# 随机行走循环
while not ptc():
# 生成随机方向
rstate = self.si_.allocState()
self.si_.getStateSpace().sampleUniform(rstate)
# 向随机方向移动
self.si_.getStateSpace().interpolate(
current, rstate, self.maxDistance_, current)
path.append(current)
# 检查是否到达目标
if goal.isSatisfied(current):
pdef.addSolutionPath(path)
return ompl.base.PlannerStatus(True)
return ompl.base.PlannerStatus(False)
关键实现要点
- 构造函数:必须调用父类构造函数,并指定规划器名称
- setup()方法:用于初始化规划器参数,如最大步长等
- solve()方法:这是规划器的核心,需要实现具体的规划算法
- 获取问题定义(pdef)
- 处理终止条件(ptc)
- 生成路径并检查目标条件
- 状态管理:注意使用allocState()和copyState()正确管理状态内存
使用自定义规划器
实现自定义规划器后,可以像使用内置规划器一样使用它:
# 创建规划问题
space = ompl.base.RealVectorStateSpace(2)
# ... 其他设置代码 ...
# 创建规划器实例
planner = RandomWalkPlanner(si)
# 设置问题定义并求解
planner.setProblemDefinition(pdef)
planner.solve(ompl.base.timedPlannerTerminationCondition(1.0))
性能优化建议
- 尽量减少Python和C++之间的数据转换
- 对于复杂算法,考虑将核心部分用C++实现,然后通过Python调用
- 合理设置规划器参数,如最大步长等
总结
在OMPL的Python接口中实现自定义规划器是一个相对直接的过程,主要需要理解OMPL的基本架构和状态管理机制。通过继承ompl.base.Planner
类并实现关键方法,开发者可以快速原型化新的规划算法,利用Python的灵活性进行算法测试和验证。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0108AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
213
2.21 K

暂无简介
Dart
521
115

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
578

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
86

Ascend Extension for PyTorch
Python
65
94

React Native鸿蒙化仓库
JavaScript
209
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399