在OMPL中实现自定义Python规划器的方法
2025-07-09 03:46:35作者:吴年前Myrtle
概述
OMPL(Open Motion Planning Library)是一个开源的基于采样的运动规划库,广泛应用于机器人路径规划领域。虽然OMPL主要使用C++实现,但它也提供了Python绑定,允许开发者使用Python进行算法开发和测试。
Python中实现自定义规划器的基本步骤
在Python中实现自定义规划器与C++版本类似,但有一些Python特有的注意事项:
- 继承基类:自定义规划器需要继承自
ompl.base.Planner类 - 实现核心方法:必须重写
solve()方法,这是规划器的核心功能 - 可选方法重写:根据需要可以重写
clear(),setup()等方法
实现示例
以下是一个简单的随机行走规划器(RandomWalkPlanner)的实现示例:
class RandomWalkPlanner(ompl.base.Planner):
def __init__(self, si):
super(RandomWalkPlanner, self).__init__(si, "RandomWalk")
# 初始化规划器参数
self.maxDistance_ = 0.0 # 最大步长
self.setup_ = False
def setup(self):
# 规划器设置方法
if not self.setup_:
self.setup_ = True
# 获取状态空间信息
stateSpace = self.si_.getStateSpace()
# 设置最大步长为状态空间直径的1/10
self.maxDistance_ = stateSpace.getMaximumExtent() * 0.1
def clear(self):
# 清理方法
super(RandomWalkPlanner, self).clear()
self.setup_ = False
def solve(self, ptc):
# 核心规划方法
self.setup()
# 获取问题定义
pdef = self.getProblemDefinition()
# 获取开始状态和目标状态
start = pdef.getStartState(0)
goal = pdef.getGoal()
# 创建路径对象
path = ompl.geometric.PathGeometric(self.si_)
path.append(start)
# 当前状态
current = self.si_.allocState()
self.si_.copyState(current, start)
# 随机行走循环
while not ptc():
# 生成随机方向
rstate = self.si_.allocState()
self.si_.getStateSpace().sampleUniform(rstate)
# 向随机方向移动
self.si_.getStateSpace().interpolate(
current, rstate, self.maxDistance_, current)
path.append(current)
# 检查是否到达目标
if goal.isSatisfied(current):
pdef.addSolutionPath(path)
return ompl.base.PlannerStatus(True)
return ompl.base.PlannerStatus(False)
关键实现要点
- 构造函数:必须调用父类构造函数,并指定规划器名称
- setup()方法:用于初始化规划器参数,如最大步长等
- solve()方法:这是规划器的核心,需要实现具体的规划算法
- 获取问题定义(pdef)
- 处理终止条件(ptc)
- 生成路径并检查目标条件
- 状态管理:注意使用allocState()和copyState()正确管理状态内存
使用自定义规划器
实现自定义规划器后,可以像使用内置规划器一样使用它:
# 创建规划问题
space = ompl.base.RealVectorStateSpace(2)
# ... 其他设置代码 ...
# 创建规划器实例
planner = RandomWalkPlanner(si)
# 设置问题定义并求解
planner.setProblemDefinition(pdef)
planner.solve(ompl.base.timedPlannerTerminationCondition(1.0))
性能优化建议
- 尽量减少Python和C++之间的数据转换
- 对于复杂算法,考虑将核心部分用C++实现,然后通过Python调用
- 合理设置规划器参数,如最大步长等
总结
在OMPL的Python接口中实现自定义规划器是一个相对直接的过程,主要需要理解OMPL的基本架构和状态管理机制。通过继承ompl.base.Planner类并实现关键方法,开发者可以快速原型化新的规划算法,利用Python的灵活性进行算法测试和验证。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
408
3.15 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
674
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
321
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
263
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868