ArtPlanner 项目使用教程
1. 项目介绍
ArtPlanner 是一个专为足式机器人设计的本地导航规划器。该项目由 ETH Zurich 的 Lorenz Wellhausen 和 Marco Hutter 开发,旨在为足式机器人提供在复杂地形中的导航能力。ArtPlanner 基于采样方法,结合了学习到的足迹评分和运动成本,以确保机器人在不同地形中的安全导航。
主要特点
- 采样路径规划:基于采样方法,适用于复杂地形。
- 学习到的运动成本:使用神经网络计算运动成本,优化路径选择。
- ROS 接口:提供 ROS 接口,方便集成到现有的 ROS 系统中。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统已经安装了以下依赖:
- ROS Noetic
- Git LFS
- OMPL (v1.4.2)
- OpenCV
- grid_map_core
2.2 克隆项目
首先,确保您已经安装了 Git LFS:
sudo apt install git-lfs
git lfs install
然后,克隆 ArtPlanner 项目:
git clone https://github.com/leggedrobotics/art_planner.git
cd art_planner
2.3 安装依赖
安装 ROS 依赖:
sudo apt install ros-noetic-ompl ros-noetic-grid-map-core
安装 Python 依赖:
pip3 install opencv-python rospkg torch torchvision torchaudio
2.4 启动项目
使用提供的启动文件启动 ArtPlanner:
roslaunch art_planner_ros art_planner.launch
如果需要使用路径跟随器,可以手动启动:
rosrun art_planner_ros path_follower.py
3. 应用案例和最佳实践
3.1 案例一:ANYmal 机器人导航
ANYmal 机器人是 ArtPlanner 的主要应用对象之一。通过 ArtPlanner,ANYmal 能够在复杂地形中进行自主导航,避开障碍物并选择最优路径。
3.2 案例二:自定义机器人导航
如果您有自定义的足式机器人,可以通过调整配置文件和训练新的运动成本模型来适应 ArtPlanner。虽然官方提供了 ANYmal 的模型,但您可以根据自己的机器人特性进行定制。
3.3 最佳实践
- 配置文件调整:根据机器人的特性和环境,调整
art_planner_ros/config/params.yaml文件中的参数。 - 高度图输入:推荐使用
elevation_mapping_cupy包生成高度图,以提高导航的准确性。
4. 典型生态项目
4.1 elevation_mapping_cupy
elevation_mapping_cupy 是一个高度图生成工具,能够为 ArtPlanner 提供精确的地形信息。它通过 CUDA 加速,提高了高度图的生成效率。
4.2 OMPL
OMPL (Open Motion Planning Library) 是一个开源的运动规划库,ArtPlanner 基于 OMPL 实现了路径规划功能。OMPL 提供了多种规划算法,适用于不同的应用场景。
4.3 ROS
ROS (Robot Operating System) 是机器人开发的标准框架,ArtPlanner 提供了完整的 ROS 接口,方便集成到现有的 ROS 项目中。
通过以上模块的介绍和实践,您可以快速上手并应用 ArtPlanner 项目,为足式机器人提供强大的导航能力。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00