Piper语音合成项目中PyTorch权重加载问题的解决方案
2025-05-26 11:29:29作者:邵娇湘
问题背景
在Piper语音合成项目使用过程中,部分用户遇到了PyTorch模型权重加载失败的问题。该问题主要出现在PyTorch 2.6及以上版本中,系统会抛出_pickle.UnpicklingError异常,提示权重加载失败。错误信息明确指出这是由于PyTorch 2.6版本将torch.load函数的weights_only参数默认值从False改为True所导致的。
问题分析
PyTorch 2.6版本引入的安全机制会对加载的模型文件进行更严格的检查。当遇到包含pathlib.PosixPath等非默认允许的全局对象时,系统会拒绝加载。这是PyTorch团队为防范潜在安全风险(如恶意代码执行)而采取的措施。
错误信息中给出了两个解决方案:
- 使用
weights_only=False参数加载(需确保模型来源可信) - 通过
torch.serialization.add_safe_globals将特定类加入白名单
解决方案
方案一:降级PyTorch版本(推荐)
对于大多数用户,特别是使用NVIDIA RTX 4050等较新显卡的用户,可以降级到PyTorch 2.0系列版本:
pip install torch==2.0.0 torchvision==0.15.1 torchaudio==2.0.1
方案二:修改加载参数(需谨慎)
如果必须使用PyTorch 2.6+版本,可以显式设置weights_only=False:
model = torch.load(model_path, weights_only=False)
但需注意:此操作可能执行模型中的任意代码,仅适用于完全信任的模型来源。
方案三:添加安全全局变量
对于高级用户,可以按照错误提示将PosixPath加入安全全局变量:
from pathlib import PosixPath
torch.serialization.add_safe_globals([PosixPath])
model = torch.load(model_path)
注意事项
- 对于RTX 5080等需要CUDA 12.8支持的新显卡,降级方案可能不适用,建议优先考虑方案三
- 从不可信来源获取的模型文件存在安全风险,建议始终验证模型来源
- 长期解决方案是等待Piper项目更新其模型存储格式以兼容PyTorch 2.6+的安全要求
技术延伸
PyTorch引入weights_only机制是为了防范"pickle炸弹"攻击,这种攻击可能通过精心构造的模型文件执行任意代码。开发者应理解:
- 模型序列化安全是深度学习部署中的重要环节
- 生产环境中建议使用
weights_only=True并配合模型签名验证 - 社区正在推动更安全的模型交换格式(如ONNX、TorchScript)
通过理解这些底层机制,用户可以更安全地使用Piper等语音合成项目,并在性能与安全之间做出合理权衡。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178