在FindMy.py项目中解析AirTag位置数据的正确方法
在MacOS系统上使用FindMy.py项目获取AirTag位置数据时,开发者可能会遇到一些常见问题。本文将详细介绍正确的方法和注意事项,帮助开发者顺利获取AirTag的位置信息。
常见错误分析
许多开发者在使用FindMy.py项目时,会遇到"Invalid EC key"的错误提示。这通常是因为他们错误地使用了fetch_last_reports.py脚本来尝试获取AirTag的位置数据。实际上,这个脚本是用于自定义FindMy标签的,而不是专门为AirTag设计的。
正确的方法步骤
-
准备系统plist文件
首先需要从MacOS系统中提取包含AirTag信息的plist文件。这些文件通常存储在系统特定位置,包含了AirTag的关键数据和位置记录。 -
使用正确的脚本
对于AirTag位置数据的获取,应该使用项目中的real_airtag.py脚本,而不是fetch_last_reports.py。这是专门为AirTag设计的解析工具。 -
文件读取注意事项
在MacOS Sequoia系统上,读取plist文件时需要特别注意文件打开方式。正确的做法是在打开文件后使用.read()方法读取内容,而不是直接传递文件对象。
代码实现细节
以下是解析AirTag位置数据的核心代码示例:
def main(plist_path: str) -> int:
# 创建配件密钥生成器
with Path(plist_path).open("rb") as f:
airtag = FindMyAccessory.from_plist(f.read())
这段代码展示了如何正确地从plist文件中读取数据并初始化AirTag对象。关键在于使用二进制模式('rb')打开文件,并确保读取了完整的文件内容。
技术要点解析
-
密钥系统工作原理
FindMy系统使用椭圆曲线加密(ECC)来保护设备通信。当遇到"Invalid EC key"错误时,通常意味着密钥格式不正确或密钥数据损坏。 -
数据解析流程
系统首先从plist文件中提取加密的位置数据,然后使用正确的密钥进行解密,最后将解密后的数据转换为可读的位置信息。 -
跨版本兼容性
不同版本的MacOS可能在数据存储格式上有所差异,因此代码需要具备一定的版本适应能力,特别是在文件读取和处理方面。
总结
通过正确的方法和工具,开发者可以顺利获取AirTag的位置数据。关键在于使用专门为AirTag设计的脚本,并注意文件读取的细节。对于遇到问题的开发者,首先应该确认是否使用了正确的工具链,然后检查数据提取和处理的每个环节是否正确无误。
掌握这些技术细节后,开发者可以基于FindMy.py项目构建更复杂的AirTag位置追踪应用,实现各种创新的位置服务功能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01