探索无线通信的未来:Automatic-Modulation-Classification 开源项目
在这个数字化的时代,无线通信正在不断发展和演进,而自动调制分类(Automatic Modulation Classification, 简称AMC)在通信领域的应用日益重要。这正是由雷志坤同学在其硕士论文基础上创建的开源项目——Automatic-Modulation-Classification,它采用深度学习方法进行调制识别技术研究,为无线通信领域的学者和技术人员提供了一套强大的工具。
项目介绍
该项目包含了从基础的概率模型到复杂神经网络模型的各种AMC算法实现。它覆盖了AWGN信道和瑞利衰落信道下的信号处理,并且对频率偏移和相位抖动等实际问题进行了模拟。除了传统的特征提取和分类器外,还重点探讨了卷积神经网络(CNN)和循环神经网络(RNN)在AMC中的应用,以及利用预训练模型进行迁移学习的方法。
项目技术分析
1. 基于似然比的AMC:项目模拟了F. Hameed等人在2009年发表的论文中的方法,用于在不同信道环境下对BPSK和QPSK调制类型进行识别。
2. 基于累积量的AMC:参照了A. Swami和B. M. Sadler在2000年的论文,通过累积量特征提取和神经网络分类器来实现数字调制类型的分类。
3. 基于瞬时信号特征的AMC:基于E. E. Azzouz和A. K. Nandi在1995年的研究成果,利用决策树和神经网络对瞬时信号特征进行分类。
4. 卷积神经网络(CNN)的AMC:训练和测试CNN模型,展示深度学习在AMC上的潜力。
5. 循环神经网络(RNN)的AMC:包括SimpleRNN、GRU和LSTM,展示了RNN在序列数据建模方面的优势。
应用场景与技术价值
Automatic-Modulation-Classification项目不仅适合学术研究,也适用于工业界。无论是通信系统的设计、调试还是故障诊断,这套工具都能帮助开发者快速准确地识别调制类型,从而提升通信系统的性能和效率。
项目特点
- 广泛的数据集:包括AWGN和Rayleigh衰落信道下的信号样本。
- 全面的算法实现:涵盖了从传统统计特征到深度学习的多种AMC方法。
- 开源代码:方便研究人员复现实验结果,促进学术交流。
- 易于上手:代码基于Matlab和Python,易于理解和修改。
为了支持更多的人参与到这个项目中,作者希望如果你从中受益,请点击star表示支持。虽然不能保证代码完全正确,但它提供了一个很好的起点和参考,是你探索无线通信世界的好帮手。
最后,不要忘记查看作者推荐的相关论文,它们将为你提供更深入的理论背景和灵感源泉。让我们一起探索无线通信的新纪元,携手推动技术的发展!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00