ClickHouse FDW for PostgreSQL 使用教程
1. 项目介绍
clickhouse_fdw 是一个开源的 PostgreSQL Foreign Data Wrapper (FDW),用于 ClickHouse 列式数据库。它允许用户将 ClickHouse 中的表作为 PostgreSQL 中的外部表进行查询,从而实现跨数据库的数据访问和集成。
该项目的主要特点包括:
- 支持 PostgreSQL 11-14 版本。
- 使用 ClickHouse 的 HTTP 接口进行数据交互。
- 支持基本的 SELECT 查询操作。
2. 项目快速启动
2.1 安装依赖
在安装 clickhouse_fdw 之前,确保系统中已经安装了以下依赖库:
libcurluuid
2.2 安装 clickhouse_fdw
-
克隆项目仓库:
git clone git@github.com:ildus/clickhouse_fdw.git cd clickhouse_fdw -
编译并安装:
mkdir build && cd build cmake .. make && make install
2.3 配置 PostgreSQL
-
在 PostgreSQL 中创建 FDW 扩展:
CREATE EXTENSION clickhouse_fdw; -
创建 ClickHouse 外部服务器:
CREATE SERVER clickhouse_svr FOREIGN DATA WRAPPER clickhouse_fdw OPTIONS (dbname 'test_database'); -
创建用户映射和外部表:
CREATE USER MAPPING FOR CURRENT_USER SERVER clickhouse_svr OPTIONS (user 'default', password ''); IMPORT FOREIGN SCHEMA "test_database" FROM SERVER clickhouse_svr INTO public;
2.4 查询 ClickHouse 数据
现在,您可以在 PostgreSQL 中查询 ClickHouse 中的数据:
SELECT bbl, tbea, bav, insertion_date FROM tax_bills_nyc LIMIT 5;
3. 应用案例和最佳实践
3.1 数据集成
clickhouse_fdw 可以用于将 ClickHouse 中的数据集成到现有的 PostgreSQL 数据库中。例如,您可以将 ClickHouse 中的日志数据与 PostgreSQL 中的业务数据进行联合查询,以进行更复杂的分析。
3.2 实时数据查询
通过将 ClickHouse 中的实时数据表映射到 PostgreSQL 中,您可以利用 PostgreSQL 的强大查询功能对实时数据进行分析和处理。
3.3 数据迁移
在某些情况下,您可能希望将 ClickHouse 中的数据迁移到 PostgreSQL 中。clickhouse_fdw 可以帮助您在迁移过程中进行数据验证和校验。
4. 典型生态项目
4.1 ClickHouse
ClickHouse 是一个开源的列式数据库管理系统,特别适合用于实时分析和大数据处理。它的高性能和可扩展性使其成为许多企业级应用的首选。
4.2 PostgreSQL
PostgreSQL 是一个功能强大的开源关系型数据库,广泛用于各种应用场景。它的高可靠性和丰富的功能使其成为许多企业和开发者的首选数据库。
4.3 Multicorn
Multicorn 是一个用于 PostgreSQL 的 FDW 框架,允许用户编写自定义的 FDW。clickhouse_fdw 基于 Multicorn 实现,提供了与 ClickHouse 的集成能力。
通过这些项目的结合使用,您可以构建一个强大的数据处理和分析平台,满足各种复杂的数据需求。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C084
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00