DS4SD/docling项目中JSON测试验证的优化实践
2025-05-06 06:14:16作者:房伟宁
在软件开发过程中,自动化测试是保证代码质量的重要手段。然而,当测试用例过于严格地依赖特定格式的输出时,反而可能成为项目发展的阻碍。DS4SD/docling项目团队最近针对这一问题进行了系统性的优化,将原有的精确JSON匹配测试升级为更灵活的文档结构验证。
问题背景
传统的JSON测试验证往往采用"黄金标准"模式,即预先保存一份"正确"的JSON输出作为参考,测试时将实际输出与这份参考数据进行逐字节比对。这种方法虽然简单直接,但存在明显缺陷:
- 当文档格式发生任何微小变动(如字段顺序调整、添加新字段等)时,即使这些变动完全保持向后兼容,测试也会失败
- 测试噪声增加,开发人员需要频繁更新测试用例中的参考数据
- 无法区分关键差异与非关键差异,降低了测试的实际价值
解决方案
DS4SD/docling项目团队开发了一套DoclingDocument验证工具,位于项目的verify_utils.py文件中。这套工具的核心思想是:
- 结构化验证:不再比较原始JSON字符串,而是解析后比较文档对象的结构
- 关键字段检查:只验证对业务逻辑真正重要的字段,忽略无关紧要的格式差异
- 灵活匹配:支持可选字段、字段值范围验证等更智能的匹配方式
新的验证方法通过一组精心设计的辅助函数实现,例如可以验证文档是否包含必需字段、字段值是否符合预期类型等,而不关心字段的具体排列顺序或是否存在不影响功能的额外字段。
实施过程
项目团队对多个模块的测试用例进行了系统性的更新:
- 办公文档处理模块:包括MS Word、Excel和PowerPoint文件的处理测试
- 数据交换格式模块:涵盖CSV、XML等常见数据格式的处理
- 专业文档模块:如USPTO专利文档、JATS科学文献格式等
每个模块的测试都从精确匹配迁移到了结构化验证,例如:
# 旧测试:精确JSON匹配
def test_word_processing():
result = process_word_document("test.docx")
assert result == EXPECTED_JSON
# 新测试:结构化验证
def test_word_processing():
result = process_word_document("test.docx")
verify_document_structure(result, required_fields=["title", "sections"])
verify_field_values(result, {"metadata.format": "docx"})
技术优势
这种改进带来了多方面的好处:
- 测试稳定性:格式的微小变化不再导致测试失败
- 维护成本:减少了因无关紧要的格式调整而更新测试用例的需要
- 表达力:测试可以更精确地表达什么是真正需要验证的内容
- 可读性:测试代码更清晰地表达了验证意图
最佳实践
基于这次优化的经验,可以总结出一些JSON测试验证的最佳实践:
- 优先验证数据结构而非具体格式
- 区分必须字段和可选字段
- 对关键业务逻辑实施严格验证,对其他部分保持灵活
- 为常见验证模式创建可重用的验证工具函数
- 在测试失败信息中提供有意义的差异报告
总结
DS4SD/docling项目的这次测试优化实践展示了一种更成熟的自动化测试方法。通过从"字符串匹配"思维转向"语义验证"思维,团队既保持了测试的保护作用,又避免了过度严格的测试带来的维护负担。这种思路不仅适用于文档处理系统,对于任何需要处理复杂数据结构的项目都有参考价值。
测试代码应该像生产代码一样精心设计,既要足够严格以捕获真正的问题,又要足够灵活以适应合理的变更。DS4SD/docling项目的这次改进正是这一原则的很好体现。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
520
3.7 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1