DS4SD/docling项目中JSON测试验证的优化实践
2025-05-06 06:14:16作者:房伟宁
在软件开发过程中,自动化测试是保证代码质量的重要手段。然而,当测试用例过于严格地依赖特定格式的输出时,反而可能成为项目发展的阻碍。DS4SD/docling项目团队最近针对这一问题进行了系统性的优化,将原有的精确JSON匹配测试升级为更灵活的文档结构验证。
问题背景
传统的JSON测试验证往往采用"黄金标准"模式,即预先保存一份"正确"的JSON输出作为参考,测试时将实际输出与这份参考数据进行逐字节比对。这种方法虽然简单直接,但存在明显缺陷:
- 当文档格式发生任何微小变动(如字段顺序调整、添加新字段等)时,即使这些变动完全保持向后兼容,测试也会失败
- 测试噪声增加,开发人员需要频繁更新测试用例中的参考数据
- 无法区分关键差异与非关键差异,降低了测试的实际价值
解决方案
DS4SD/docling项目团队开发了一套DoclingDocument验证工具,位于项目的verify_utils.py文件中。这套工具的核心思想是:
- 结构化验证:不再比较原始JSON字符串,而是解析后比较文档对象的结构
- 关键字段检查:只验证对业务逻辑真正重要的字段,忽略无关紧要的格式差异
- 灵活匹配:支持可选字段、字段值范围验证等更智能的匹配方式
新的验证方法通过一组精心设计的辅助函数实现,例如可以验证文档是否包含必需字段、字段值是否符合预期类型等,而不关心字段的具体排列顺序或是否存在不影响功能的额外字段。
实施过程
项目团队对多个模块的测试用例进行了系统性的更新:
- 办公文档处理模块:包括MS Word、Excel和PowerPoint文件的处理测试
- 数据交换格式模块:涵盖CSV、XML等常见数据格式的处理
- 专业文档模块:如USPTO专利文档、JATS科学文献格式等
每个模块的测试都从精确匹配迁移到了结构化验证,例如:
# 旧测试:精确JSON匹配
def test_word_processing():
result = process_word_document("test.docx")
assert result == EXPECTED_JSON
# 新测试:结构化验证
def test_word_processing():
result = process_word_document("test.docx")
verify_document_structure(result, required_fields=["title", "sections"])
verify_field_values(result, {"metadata.format": "docx"})
技术优势
这种改进带来了多方面的好处:
- 测试稳定性:格式的微小变化不再导致测试失败
- 维护成本:减少了因无关紧要的格式调整而更新测试用例的需要
- 表达力:测试可以更精确地表达什么是真正需要验证的内容
- 可读性:测试代码更清晰地表达了验证意图
最佳实践
基于这次优化的经验,可以总结出一些JSON测试验证的最佳实践:
- 优先验证数据结构而非具体格式
- 区分必须字段和可选字段
- 对关键业务逻辑实施严格验证,对其他部分保持灵活
- 为常见验证模式创建可重用的验证工具函数
- 在测试失败信息中提供有意义的差异报告
总结
DS4SD/docling项目的这次测试优化实践展示了一种更成熟的自动化测试方法。通过从"字符串匹配"思维转向"语义验证"思维,团队既保持了测试的保护作用,又避免了过度严格的测试带来的维护负担。这种思路不仅适用于文档处理系统,对于任何需要处理复杂数据结构的项目都有参考价值。
测试代码应该像生产代码一样精心设计,既要足够严格以捕获真正的问题,又要足够灵活以适应合理的变更。DS4SD/docling项目的这次改进正是这一原则的很好体现。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217