DS4SD/docling项目中JSON测试验证的优化实践
2025-05-06 09:00:01作者:房伟宁
在软件开发过程中,自动化测试是保证代码质量的重要手段。然而,当测试用例过于严格地依赖特定格式的输出时,反而可能成为项目发展的阻碍。DS4SD/docling项目团队最近针对这一问题进行了系统性的优化,将原有的精确JSON匹配测试升级为更灵活的文档结构验证。
问题背景
传统的JSON测试验证往往采用"黄金标准"模式,即预先保存一份"正确"的JSON输出作为参考,测试时将实际输出与这份参考数据进行逐字节比对。这种方法虽然简单直接,但存在明显缺陷:
- 当文档格式发生任何微小变动(如字段顺序调整、添加新字段等)时,即使这些变动完全保持向后兼容,测试也会失败
- 测试噪声增加,开发人员需要频繁更新测试用例中的参考数据
- 无法区分关键差异与非关键差异,降低了测试的实际价值
解决方案
DS4SD/docling项目团队开发了一套DoclingDocument验证工具,位于项目的verify_utils.py文件中。这套工具的核心思想是:
- 结构化验证:不再比较原始JSON字符串,而是解析后比较文档对象的结构
- 关键字段检查:只验证对业务逻辑真正重要的字段,忽略无关紧要的格式差异
- 灵活匹配:支持可选字段、字段值范围验证等更智能的匹配方式
新的验证方法通过一组精心设计的辅助函数实现,例如可以验证文档是否包含必需字段、字段值是否符合预期类型等,而不关心字段的具体排列顺序或是否存在不影响功能的额外字段。
实施过程
项目团队对多个模块的测试用例进行了系统性的更新:
- 办公文档处理模块:包括MS Word、Excel和PowerPoint文件的处理测试
- 数据交换格式模块:涵盖CSV、XML等常见数据格式的处理
- 专业文档模块:如USPTO专利文档、JATS科学文献格式等
每个模块的测试都从精确匹配迁移到了结构化验证,例如:
# 旧测试:精确JSON匹配
def test_word_processing():
result = process_word_document("test.docx")
assert result == EXPECTED_JSON
# 新测试:结构化验证
def test_word_processing():
result = process_word_document("test.docx")
verify_document_structure(result, required_fields=["title", "sections"])
verify_field_values(result, {"metadata.format": "docx"})
技术优势
这种改进带来了多方面的好处:
- 测试稳定性:格式的微小变化不再导致测试失败
- 维护成本:减少了因无关紧要的格式调整而更新测试用例的需要
- 表达力:测试可以更精确地表达什么是真正需要验证的内容
- 可读性:测试代码更清晰地表达了验证意图
最佳实践
基于这次优化的经验,可以总结出一些JSON测试验证的最佳实践:
- 优先验证数据结构而非具体格式
- 区分必须字段和可选字段
- 对关键业务逻辑实施严格验证,对其他部分保持灵活
- 为常见验证模式创建可重用的验证工具函数
- 在测试失败信息中提供有意义的差异报告
总结
DS4SD/docling项目的这次测试优化实践展示了一种更成熟的自动化测试方法。通过从"字符串匹配"思维转向"语义验证"思维,团队既保持了测试的保护作用,又避免了过度严格的测试带来的维护负担。这种思路不仅适用于文档处理系统,对于任何需要处理复杂数据结构的项目都有参考价值。
测试代码应该像生产代码一样精心设计,既要足够严格以捕获真正的问题,又要足够灵活以适应合理的变更。DS4SD/docling项目的这次改进正是这一原则的很好体现。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5