Docling项目离线模型使用指南
2025-05-06 04:55:33作者:廉彬冶Miranda
背景介绍
Docling是一个强大的文档处理工具,它依赖于多个预训练模型来完成文档转换任务。在实际企业环境中,由于网络安全策略限制,许多内部网络无法直接访问互联网下载模型文件。本文将详细介绍如何在Docling项目中配置和使用本地存储的模型文件,解决内网环境下的模型加载问题。
模型缓存机制
Docling默认会通过Hugging Face Hub下载所需的模型文件,这些文件会被缓存在系统默认位置。了解这一机制对于离线使用至关重要:
- Hugging Face模型默认缓存路径:用户目录下的
.cache/huggingface/hub文件夹 - Docling自定义模型路径:用户目录下的
.cache/docling/models文件夹
离线使用方案
方案一:预下载模型
在能够访问互联网的环境中预先下载所有必需的模型文件:
converter = DocumentConverter()
converter.initialize_pipeline(InputFormat.PDF)
执行上述代码会自动下载并缓存所有相关模型文件。之后可以将整个缓存目录打包,部署到内网环境中使用。
方案二:指定自定义模型路径
如果已经将模型文件存放在特定位置,可以通过配置指定路径:
pipeline_options = PdfPipelineOptions(artifacts_path="自定义路径")
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
EasyOCR的特殊配置
Docling集成了EasyOCR进行OCR识别,其模型文件需要单独处理:
- EasyOCR默认模型路径:用户目录下的
.EasyOCR/model文件夹 - 在Docling中需要将其链接到
.cache/docling/models/EasyOcr路径
可以通过以下方式配置EasyOCR选项:
easyocr_options = EasyOcrOptions(
model_storage_directory="自定义路径",
download_enabled=False # 禁用自动下载
)
模型路径映射技巧
由于Docling对模型路径命名规则与原始Hugging Face有所不同,建议创建符号链接:
ln -s ~/.cache/huggingface/hub/models/ds4sd/DocumentFigureClassifier ~/.cache/docling/models/ds4sd--DocumentFigureClassifier
ln -s ~/.cache/huggingface/hub/models/ds4sd/docling-models/ ~/.cache/docling/models/ds4sd--docling-models
ln -s ~/.cache/huggingface/hub/models/ds4sd/CodeFormula/ ~/.cache/docling/models/ds4sd--CodeFormula
ln -s ~/.EasyOCR/model/ ~/.cache/docling/models/EasyOcr
最佳实践建议
- 统一管理模型文件:建议将所有模型文件集中存放在一个网络共享位置,便于团队共享和维护
- 版本控制:对模型文件进行版本管理,确保开发、测试和生产环境使用相同版本的模型
- 自动化部署:编写部署脚本自动创建所需的符号链接和目录结构
- 文档记录:详细记录所使用的模型版本和配置,便于问题排查和后续升级
总结
通过合理配置模型文件路径,Docling可以完全在内网环境中运行,无需互联网连接。本文介绍的两种方案和路径映射技巧,可以帮助企业用户顺利部署和使用Docling进行文档处理工作。对于需要更高安全级别的环境,还可以考虑将模型文件打包到Docker镜像中,实现完全自包含的部署方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
436
3.32 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
701
379
Ascend Extension for PyTorch
Python
246
283
暂无简介
Dart
699
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
273
328
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
267
124
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871