Docling项目离线模型使用指南
2025-05-06 13:00:29作者:廉彬冶Miranda
背景介绍
Docling是一个强大的文档处理工具,它依赖于多个预训练模型来完成文档转换任务。在实际企业环境中,由于网络安全策略限制,许多内部网络无法直接访问互联网下载模型文件。本文将详细介绍如何在Docling项目中配置和使用本地存储的模型文件,解决内网环境下的模型加载问题。
模型缓存机制
Docling默认会通过Hugging Face Hub下载所需的模型文件,这些文件会被缓存在系统默认位置。了解这一机制对于离线使用至关重要:
- Hugging Face模型默认缓存路径:用户目录下的
.cache/huggingface/hub文件夹 - Docling自定义模型路径:用户目录下的
.cache/docling/models文件夹
离线使用方案
方案一:预下载模型
在能够访问互联网的环境中预先下载所有必需的模型文件:
converter = DocumentConverter()
converter.initialize_pipeline(InputFormat.PDF)
执行上述代码会自动下载并缓存所有相关模型文件。之后可以将整个缓存目录打包,部署到内网环境中使用。
方案二:指定自定义模型路径
如果已经将模型文件存放在特定位置,可以通过配置指定路径:
pipeline_options = PdfPipelineOptions(artifacts_path="自定义路径")
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
EasyOCR的特殊配置
Docling集成了EasyOCR进行OCR识别,其模型文件需要单独处理:
- EasyOCR默认模型路径:用户目录下的
.EasyOCR/model文件夹 - 在Docling中需要将其链接到
.cache/docling/models/EasyOcr路径
可以通过以下方式配置EasyOCR选项:
easyocr_options = EasyOcrOptions(
model_storage_directory="自定义路径",
download_enabled=False # 禁用自动下载
)
模型路径映射技巧
由于Docling对模型路径命名规则与原始Hugging Face有所不同,建议创建符号链接:
ln -s ~/.cache/huggingface/hub/models/ds4sd/DocumentFigureClassifier ~/.cache/docling/models/ds4sd--DocumentFigureClassifier
ln -s ~/.cache/huggingface/hub/models/ds4sd/docling-models/ ~/.cache/docling/models/ds4sd--docling-models
ln -s ~/.cache/huggingface/hub/models/ds4sd/CodeFormula/ ~/.cache/docling/models/ds4sd--CodeFormula
ln -s ~/.EasyOCR/model/ ~/.cache/docling/models/EasyOcr
最佳实践建议
- 统一管理模型文件:建议将所有模型文件集中存放在一个网络共享位置,便于团队共享和维护
- 版本控制:对模型文件进行版本管理,确保开发、测试和生产环境使用相同版本的模型
- 自动化部署:编写部署脚本自动创建所需的符号链接和目录结构
- 文档记录:详细记录所使用的模型版本和配置,便于问题排查和后续升级
总结
通过合理配置模型文件路径,Docling可以完全在内网环境中运行,无需互联网连接。本文介绍的两种方案和路径映射技巧,可以帮助企业用户顺利部署和使用Docling进行文档处理工作。对于需要更高安全级别的环境,还可以考虑将模型文件打包到Docker镜像中,实现完全自包含的部署方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350