**三维边界框估计在自动驾驶中的应用**
近年来,自动驾驶技术的飞速发展引起了全球范围内的广泛关注与研究热潮。其中,准确识别并定位道路中各种物体的能力,是实现安全驾驶的关键。本篇文章将向您介绍一款开源项目——基于深度学习和几何原理的三维边界框估计算法,该算法已被成功应用于自动驾驶场景中。
一、项目简介
该项目全面实现了论文《使用深度学习和几何进行3D边界框估计》所提出的方法,并在此基础上进行了多项创新改进。相较于前作image-to-3d-bbox(https://github.com/experiencor/image-to-3d-bbox),它不仅简化了配置参数,提升了模型的鲁棒性和效率,还引入了软约束机制以优化特定位置下3D边界框的稳定性。
二、技术分析
依赖环境: 支持Python 3.6及以上版本,TensorFlow 1.12.0。
核心技术创新:
-
无先验信息定位: 不再依赖于对象预置位置信息,而是通过解析局部方向和二维坐标确定每个目标的具体位置。
-
增强稳定性的软约束:为提高不同场景下的预测准确性,添加软约束来改善特定点上3D边界框的稳定性。
-
MobileNet V2的应用: 引入更轻量级的网络架构,显著减少了参数数量,使得模型成为全卷积类型,极大地提高了运行速度和资源利用率。
-
优化导向损失函数: 对原有的导向损失进行了正确的形式调整,进一步提升模型的表现力。
-
增强可视化功能: 增加鸟瞰视图的可视化支持,方便直观地评估和展示结果。
三、应用场景
本项目主要用于处理真实世界中的复杂驾驶环境,如城市街道、高速公路等,能够有效帮助自动驾驶车辆实时检测前方行人、车辆及其他障碍物的位置尺寸,进而做出及时避让或减速决策,确保行车安全。
四、项目特点
性能对比
| 骨干网络 | 参数/模型大小 | 推理时间(s/img)(CPU/GPU) | 类型 | Easy | Moderate | Hard |
|---|---|---|---|---|---|---|
| VGG | 40.4M / 323MB | 2.041 / 0.081 | AP2D | 100 | 100 | 100 |
| AOS | 99.98 | 99.82 | 99.57 | |||
| APBV | 26.42 | 28.15 | 27.74 | |||
| AP3D | 20.53 | 22.17 | 25.71 | |||
| mobileNet V2 | 2.2M / 19MB | 0.410 / 0.113 | AP2D | 100 | 100 | 100 |
| AOS | 99.78 | 99.23 | 98.18 | |||
| APBV | 11.04 | 8.99 | 10.51 | |||
| AP3D | 7.98 | 7.95 | 9.32 |
以上数据表明,在加入软约束后,不仅保持了较高的预测精度,而且大幅缩短了推理时间,尤其在移动设备上表现出色。这得益于MobileNet V2的高效性能,使其在各类设备上的部署更加灵活便捷。
总的来说,这一项目以其独特的技术和算法优势,已经在自动驾驶领域展现出巨大的潜力和价值。对于那些致力于研发高精度视觉感知系统的团队而言,这是一个不可多得的学习和参考平台。
如何开始?
想要尝试这个项目的读者们,请按照README文件的指导准备KITTIDataset,安装所需的库,然后可以开始训练模型、进行预测以及可视化结果。无论是专业研究人员还是学生爱好者,都将从这个项目中学到宝贵的实践经验和技术知识。
立即行动起来,探索自动驾驶领域的无限可能吧!
以上介绍了如何根据给定的项目README文档撰写一篇详尽且有吸引力的文章。希望这篇解读能够激发更多人对自动驾驶技术的兴趣,共同推动其向前发展。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00