PIDNet 开源项目使用教程
2024-09-13 04:05:14作者:幸俭卉
1. 项目介绍
PIDNet 是一个用于实时语义分割的深度学习网络,灵感来源于 PID 控制器。该项目提出了一种新颖的三分支网络架构,包含三个分支分别用于解析细节信息、上下文信息和边界信息。PIDNet 在推理速度和准确性之间实现了最佳平衡,特别适用于自动驾驶和医学影像等实时应用场景。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了以下依赖:
- Python 3.6+
- PyTorch 1.8+
- CUDA 11.2+
- cuDNN 8.0+
2.2 克隆项目
使用以下命令克隆 PIDNet 项目到本地:
git clone https://github.com/XuJiacong/PIDNet.git
cd PIDNet
2.3 数据准备
下载 Cityscapes 和 CamVid 数据集,并解压到 data/cityscapes 和 data/camvid 目录中。确保路径正确:
mkdir -p data/cityscapes
mkdir -p data/camvid
2.4 训练模型
使用以下命令训练 PIDNet-S 模型:
python tools/train.py --cfg configs/cityscapes/pidnet_small_cityscapes.yaml GPUS (0,1) TRAIN.BATCH_SIZE_PER_GPU 6
2.5 评估模型
使用以下命令评估 PIDNet-S 模型在 Cityscapes 验证集上的性能:
python tools/eval.py --cfg configs/cityscapes/pidnet_small_cityscapes.yaml TEST.MODEL_FILE pretrained_models/cityscapes/PIDNet_S_Cityscapes_val.pt
3. 应用案例和最佳实践
3.1 自动驾驶
PIDNet 在自动驾驶中的应用非常广泛。通过实时语义分割,车辆可以准确识别道路、行人、交通标志等,从而做出安全的驾驶决策。
3.2 医学影像分析
在医学影像分析中,PIDNet 可以帮助医生快速准确地分割出病变区域,提高诊断效率和准确性。
4. 典型生态项目
4.1 HRNet-Semantic-Segmentation
PIDNet 的实现基于 HRNet-Semantic-Segmentation,这是一个高效的语义分割框架,提供了丰富的工具和预训练模型。
4.2 DDRNet
DDRNet 是一个用于实时语义分割的双分支网络,PIDNet 在其基础上引入了边界分支,进一步提升了性能。
通过以上步骤,你可以快速上手使用 PIDNet 进行实时语义分割任务。希望这个教程对你有所帮助!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322