CTW Baseline 项目使用指南
1. 项目介绍
CTW Baseline 是一个基于 CTW 数据集 的基准方法实现项目。该项目由 Tai-Ling Yuan 主导开发,主要用于中文文本的分类、检测和识别任务。项目代码主要基于 MIT 许可证开源,部分组件使用了其他开源项目的许可证。
CTW 数据集是一个大规模的中文文本数据集,包含了超过 30,000 张街景图像中的 1,018,402 个字符实例,涵盖了 3,850 个不同的字符类别。该数据集旨在推动中文文本在自然图像中的检测和识别研究。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Python 3.x 和 Git。然后,克隆项目代码库:
git clone https://github.com/yuantailing/ctw-baseline.git
cd ctw-baseline
2.2 安装依赖
项目依赖项可以通过以下命令安装:
pip install -r requirements.txt
2.3 运行示例
项目提供了一个 Jupyter Notebook 教程,位于 tutorial/ 目录下。你可以通过以下命令启动 Jupyter Notebook:
cd tutorial
jupyter notebook
在 Jupyter Notebook 中,你可以按照教程逐步运行代码,了解如何使用 CTW Baseline 进行中文文本的分类和检测。
3. 应用案例和最佳实践
3.1 中文文本分类
CTW Baseline 提供了基于 TensorFlow 的分类模型,可以用于中文文本的分类任务。你可以通过修改 classification/ 目录下的代码,训练自己的分类模型。
3.2 中文文本检测
项目中使用了 YOLOv2 进行中文文本的检测。你可以通过 detection/ 目录下的代码,训练和测试中文文本检测模型。
3.3 最佳实践
- 数据增强:在训练过程中,使用数据增强技术(如旋转、缩放、裁剪等)可以显著提高模型的泛化能力。
- 多尺度测试:在检测任务中,使用多尺度测试方案可以提高模型的检测精度。
- 模型优化:通过调整模型的超参数(如学习率、批量大小等),可以进一步优化模型的性能。
4. 典型生态项目
4.1 TensorFlow
TensorFlow 是一个广泛使用的深度学习框架,CTW Baseline 中的分类模型和部分检测模型基于 TensorFlow 实现。
4.2 YOLOv2
YOLOv2 是一种流行的目标检测算法,CTW Baseline 中的中文文本检测模型基于 YOLOv2 进行了适配和优化。
4.3 CodaLab
CodaLab 是一个用于机器学习和数据科学竞赛的平台,CTW 数据集的评估服务器部署在 CodaLab 上,用户可以通过 CodaLab 提交自己的模型并进行评估。
通过以上步骤,你可以快速上手 CTW Baseline 项目,并将其应用于中文文本的分类和检测任务中。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00