PyTorch-Lightning中的FSDP:模型并行与数据并行的双重解读
2025-05-05 14:18:18作者:卓炯娓
引言
在深度学习训练过程中,模型并行和数据并行是两种常见的分布式训练策略。最近在PyTorch-Lightning文档中关于FSDP(Fully Sharded Data Parallel)的描述引发了一些讨论,特别是关于它是否应该被归类为模型并行技术。本文将深入解析FSDP的工作原理,阐明其在模型并行和数据并行中的双重角色。
FSDP的基本原理
FSDP是PyTorch提供的一种分布式训练策略,全称为"完全分片数据并行"。与传统的数据并行方法不同,FSDP采用了更细粒度的参数分片策略:
- 参数分片:将模型参数、梯度和优化器状态分片到多个GPU上
- 动态加载:在正向和反向传播过程中按需加载所需的分片
- 通信优化:减少跨GPU的通信量,提高训练效率
模型并行特性
FSDP之所以被认为具有模型并行特性,主要体现在以下几个方面:
- 参数分布存储:不同于传统数据并行中每个GPU保存完整的模型副本,FSDP中每个GPU只保存模型的一部分参数
- 计算时动态组装:在计算过程中,FSDP会动态地从各个GPU收集当前计算所需的参数分片
- 内存效率:这种分片方式显著降低了单个GPU的内存需求,使得训练超大模型成为可能
数据并行特性
同时,FSDP保留了数据并行的核心特征:
- 数据分片:训练数据被分配到不同的GPU上
- 梯度聚合:各GPU计算完梯度后,会进行跨设备的梯度聚合
- 参数更新:聚合后的梯度用于更新模型参数
与传统方法的对比
与传统的模型并行和数据并行方法相比,FSDP提供了独特的优势:
- 相比纯模型并行:FSDP不需要手动划分模型层到不同设备,分片是自动完成的
- 相比纯数据并行:FSDP大大降低了内存消耗,可以训练更大的模型
- 通信优化:FSDP实现了更高效的通信模式,减少了带宽需求
在PyTorch-Lightning中的应用
PyTorch-Lightning将FSDP作为一种高级分布式训练策略提供支持:
- 简化配置:通过简单的标志即可启用FSDP
- 内存优化:自动处理参数分片和动态加载
- 扩展性:支持超大模型的训练,突破单卡内存限制
结论
FSDP确实是一种融合了模型并行和数据并行特性的混合式分布式训练策略。PyTorch-Lightning文档将其归类为模型并行训练方法是合理的,因为它确实通过参数分片实现了模型层面的并行。同时,它又保留了数据并行的核心机制,是一种高效的分布式训练解决方案。理解FSDP的这种双重特性,有助于开发者更好地利用它来训练大规模深度学习模型。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
225
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868