KubeVela 集成外部 EKS 集群的认证问题解决方案
在 Kubernetes 多集群管理场景中,KubeVela 作为优秀的应用交付平台,能够有效管理多个集群资源。本文将详细介绍如何解决在 KubeVela 中添加外部 EKS 集群时遇到的认证问题。
问题背景
当用户尝试将外部 EKS 集群加入 KubeVela 管理时,可能会遇到如下错误提示:
Error: failed to ensure vela-system namespace installed in cluster test: failed to check if namespace vela-system exists: namespaces "vela-system" is forbidden: User "system:anonymous" cannot get resource "namespaces" in API group "" in the namespace "vela-system"
这个错误表明 KubeVela 尝试使用匿名用户身份访问目标集群,但缺乏必要的权限。根本原因在于 EKS 集群默认生成的 kubeconfig 使用了 AWS CLI 的 exec 认证方式,而 KubeVela 的集群加入功能需要直接使用令牌认证。
解决方案详解
1. 获取 EKS 集群访问令牌
首先需要通过 AWS CLI 获取目标 EKS 集群的有效访问令牌:
aws --region <region> eks get-token --cluster-name <eks-cluster-name>
执行该命令后会返回包含访问令牌的 JSON 响应,其中 status.token 字段即为所需的认证令牌。
2. 修改 Kubeconfig 配置
接下来需要修改目标集群的 kubeconfig 文件,将原有的 exec 认证方式替换为令牌认证。以下是修改后的 kubeconfig 示例:
apiVersion: v1
clusters:
- cluster:
server: <api-server-url>
certificate-authority-data: <base64-encoded-ca-cert>
name: cluster-b
contexts:
- context:
cluster: cluster-b
user: cluster-b
namespace: default
name: cluster-b
current-context: cluster-b
kind: Config
preferences: {}
users:
- name: cluster-b
user:
token: "<从AWS获取的令牌>"
3. 使用修改后的配置加入集群
完成 kubeconfig 修改后,即可使用 KubeVela 命令行工具将外部集群加入管理:
vela cluster join ./modified-kube.config --yes
技术原理深入
EKS 认证机制分析
AWS EKS 默认使用 IAM 身份进行集群认证,通过 aws-iam-authenticator 组件实现。这种机制依赖 AWS CLI 动态生成短期有效的访问令牌,虽然安全性高,但需要执行外部命令。
KubeVela 的集群管理需求
KubeVela 的集群管理功能需要能够直接读取认证信息,而不依赖外部命令执行。因此需要将动态生成的令牌静态化配置在 kubeconfig 中。
令牌有效期考量
需要注意的是,从 AWS 获取的令牌通常具有较短的有效期(默认15分钟)。对于生产环境,建议:
- 使用服务账户创建长期有效的令牌
- 定期更新 kubeconfig 中的令牌
- 考虑使用 IAM 角色与服务账户的联合身份认证
最佳实践建议
- 权限最小化原则:确保使用的令牌仅具有必要的权限
- 自动化管理:可以编写脚本自动更新 kubeconfig 中的令牌
- 审计日志:记录所有集群加入操作,便于安全审计
- 多因素认证:对关键操作启用 MFA 保护
通过以上方法,可以安全可靠地将外部 EKS 集群纳入 KubeVela 的统一管理体系中,实现跨集群的应用部署和管理。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01